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Abstract

Traffic forecasting is one of the key elements to ensure the safety and convenience of citizens. Existing
traffic forecasting models primarily focus on deep learning architectures to capture spatial and temporal
correlation. They often overlook the underlying nature of traffic. Specifically, the sensor networks in
most traffic datasets do not accurately represent the actual road network exploited by vehicles, failing
to provide insights into the traffic patterns in urban activities. To overcome these limitations, we pro-
pose an improved traffic forecasting method based on graph convolution deep learning algorithms. We
leverage human activity frequency data from National Household Travel Survey to enhance the infer-
ence capability of a causal relationship between activity and traffic patterns. Despite making minimal
modifications to the conventional graph convolutional recurrent networks and graph convolutional trans-
former architectures, our approach achieves state-of-the-art performance without introducing excessive

computational overhead.

Keywords Traffic Forecasting, Graph Convolution Deep Learning, Human Activity Data
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HE CITIES OF THE FUTURE WILL NO LONGER BE COMPLETED SOLELY BY HUMAN EFFORTS.

T Artificial intelligence and robots will replace humans in repetitive labor. When designing new
structures, Al can propose creative architectural designs according to given conditions, and during con-
struction, robots can take over repetitive and physical tasks such as moving bricks or applying cement.
Let us call these Al and robotic systems developed to support urban architecture and construction as
“Urban Space Robots.”

As Urban Space Robots are efficiently utilized in the future, the role and responsibility of urban
planners, who are the decision-makers using these systems, will become more significant. In the past, it
took a considerable amount of time from design to construction, but thanks to advancements in Urban
Space Robots, a time has come when urban planning in simulations is quickly realized in reality. However,
if decision-makers abuse Urban Space Robots for personal power and gain, the consequences would be
devastating. Human rights will be ignored, the environment destroyed, dilapidated abandoned buildings
would proliferate, crime and fire incidents would surge, and poor financial management might make it
difficult to provide even basic welfare. Additionally, just as social media penetrated deeply into people’s
minds, controlling and deteriorating mental well-being, Urban Space Robots will pose a dangerous risk
by penetrating the physical world of humans, even controlling bodily movement.

Currently, due to urbanization, we are facing various problems. With urban populations highly
concentrated, numerous issues such as skyrocketing real estate prices, declining value of labor income,
the spread of speculative get-rich-quick attitudes, declining marriage rates and low birth rates, rising
individualism, and increasing solitary deaths have arisen. These issues may be less a matter of individual
responsibility and more a form of “cost” our society is paying for advancing cities in pursuit of short-
term economic profit without sufficient discussion. Furthermore, historically, even individuals who loved
their neighbors and were dedicated to the nation for a better city have been attacked or disparaged due
to jealousy and conflicts of interest, and sometimes their contributions were undervalued or distorted
historically. As a result, even those with both power and goodwill have become hesitant to take on
leadership roles.

In the future, Urban Space Robots will connect more deeply with citizens’ communications. Citizens
will actively express the discomfort, anxiety, and dissatisfaction they feel in their daily lives, and Al will
aggregate this information through big data collection devices, reflecting it in urban development. This
process will provide opportunities to reduce the unhappiness of citizens, understand each other’s positions
and roles, and communicate more effectively. We look forward to a future where, instead of a small group
of leaders unilaterally leading the way, every citizen contributes to a better city and community from
their own place, guiding the development of the nation and humanity together. Through Urban Space
Robots, we hope to enhance communication and neighborly love, and that citizens will understand that
leaders, too, are humans like us, working together toward a happier city. This dissertation aims to make

a small footstep toward that future.

October 25th, 2024

Daejeon






For whoever wants to save their life will lose it,

but whoever loses their life for me will save it.

Luke 9:24






Chapter 1. Introduction
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Figure 1.1: A Glimpse into the Short-term Traffic Forecasting Challenge.

1.1 Overview

The Traffic Forecasting! problem addressed in this dissertation is defined as predicting future traffic
values by measuring traffic speed or volume from highway-installed traffic sensors or cameras. Figure 1.1
provides an intuitive depiction of the Traffic Forecasting problem, where past traffic scenes within the
yellow range are used to forecast future traffic scenes in the blue range?. Efficient Traffic Forecasting can
be integrated into navigation systems to help select routes that avoid traffic congestion, thereby saving
time for personal vehicles or logistics transport vehicles. Furthermore, integrating Traffic Forecasting
technology with future autonomous vehicle and platooning technologies® could enable efficient traffic
management by strategically allocating vehicle routes and numbers from a holistic perspective.
Fundamentally, the most intriguing aspect of the Traffic Forecasting problem is imagining how
traffic would change in response to unforeseen urban transformations, such as the construction of new
residential buildings or large-scale employment facilities. For instance, if high-density residential areas
were developed in a specific region to accommodate a newly created workforce, it would be essential to

consider the existing infrastructure, the locations of commercial areas, and the movement patterns of

IThe term Traffic Forecasting in this dissertation is closer to “i% of H” in Korean. Translating it as “¢j]Z (prediction)”

could lead to the misconception that the focus is solely on resolving the issue of quantitative accuracy.
2The visualization uses data from PEMS-BAY from [Li et al., 2018]. This dataset represents Santa Clara County, near

Silicon Valley, also known as the Bay Area. It consists of a total of 24 scenes at 5-minute intervals over three days in 2017,

from 4:00 PM to 5:55 PM. The problem is to forecast 12 future scenes (1 hour) based on 12 past scenes (1 hour).
3Platooning is a technology that enables two or more vehicles or trucks to form a convoy and operate autonomously in a

coordinated manner, similar to a train. This approach can mitigate phenomena like traffic waves, where traffic congestion

arises without any clear cause.



urban residents over time. By comprehensively analyzing these factors and the temporal dynamics of

traffic flow, it would become possible to forecast traffic patterns effectively.
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(a) SimCity 2013 (b) Global System Dynamics

Figure 1.2: (a) Traffic Congestion as Depicted in the SimCity 2013 (b) Forrester’s Global System
Dynamics Diagram (1971)

During my doctoral research, the experience of playing SimCity 2013[contributors, nd], as shown in
Figure 1.2[Entertainment, nd], greatly helped me broaden my understanding of cities and the underlying
causes of traffic flow. SimCity is a city simulation game first published in 1989 by Will Wright, inspired by
Jay Wright Forrester’s Urban Dynamics[Forrester, 1969]. A priori, phenomena such as traffic congestion,
public health issues, crime, and air pollution can be viewed as the comprehensive results of human
activities in urban settings. Jay Wright Forrester endeavored to represent the explicit causal relationships
between urban variables—such as birth rates, mortality rates, food supply, pollution, capital, and natural
resources—through causal inference graphs|[Forrester, 1971]. Will Wright adopted this philosophy and
built upon it, creating urban simulations based on the principles of agent-based modeling.

However, as times have changed, SimCity no longer enjoys the same popularity or resonance it
once had. Human behavior is neither predictable nor simplistic, and the diversity in individuals’ occu-
pations, preferences, and personalities makes city simulations that yield expected results by constructing
purpose-specific buildings less relatable. For instance, in SimCity, buildings are broadly categorized into
residential, commercial, and industrial zones. The simulation depicts population movements such as peo-
ple traveling from residential areas to commercial and industrial zones during early morning hours (5-6
AM), shifting predominantly to commercial zones around noon (12-4 PM), and returning to residential
areas in the evening (6-9 PM)*. However, these urban mobility patterns vary significantly depending on
the city’s unique characteristics and its residents’ individuality, making them less relatable in many con-
texts. Additionally, in cities like those in South Korea, where commercial districts remain vibrant even
after midnight, SimCity’s simulation—based on American urban development models—fails to resonate
with or accurately reflect such dynamics.

Before delving into this dissertation, it is important to clarify that it does not address the Traf-
fic Forecasting problem involving entirely novel urban transformations. Furthermore, I fundamentally
believe that solving this issue would require an approach grounded not in Jay Forrester’s System Dy-
namics but rather in Schopenhauer’s philosophy of Wille(will)[Schopenhauer, 1833]. However, since this

perspective lies outside the mainstream of the CS/AI academic community, it is not discussed in this dis-

4Refer to a recorded video of a SimCity day: https://youtu.be/qqfUsyYuhcM
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sertation. That said, with the advancement of artificial intelligence and robotics, I anticipate a growing
shift away from lifestyles centered on repetitive and predictable tasks or labor. Instead, more people are
likely to engage in irregular and spontaneous behaviors, further complicating traditional urban mobility
models and forecasting challenges.

Returning to the focus of this dissertation, it specifically addresses the Short-term Traffic Fore-
casting problem for freeways, as depicted in Figure 1.1, based on traffic speed data spanning a rel-
atively short period of 2-4 months. Using deep learning techniques, I implemented a model inspired
by sequence-to-sequence approaches used in language models, where recurring traffic sensor signal se-
quences are read to predict the next sequence. The initial problem formulation can be traced back to
DCRNN]JLi et al., 2018], which is widely regarded as a seminal work in this field. However, the proposed
UAGCRN[Han et al., 2023] in this dissertation fundamentally critiques the graph connectivity data defi-
nitions in DCRNN. It also provides a broader critique of data-driven graph connectivity learning models,
such as GTS[Shang et al., 2021], GraphWaveNet[Wu et al., 2019], and STEP[Shao et al., 2022]. There-
fore, the validation of this dissertation’s findings requires a cautious and rigorous approach. Nonetheless,
the UAGCRN model is relatively simple, intuitive, and built on a scientific foundation, making it more
accessible for verification®. While I personally assess the application of the concept of Human Activity
to deep learning models as still being largely theoretical, this work represents one of the first academic
attempts to integrate the humanities concept of human activity within cities into a machine learning

framework. This effort underscores a novel interdisciplinary approach, bridging urban studies and Al.

1.2 Challenge

Unlike typical time-series forecasting problems, traffic forecasting requires inferring a sensor’s traffic
values by leveraging patterns observed in other sensors. In this process, Graph Convolutional Network
(GCN) is normally used where the graph represents the adjacency connectivity between the sensors that
can give information Previous studies have explored various spatiotemporal models based on Recurrent
Neural Networks (RNN) [Li et al., 2018, Yu et al., 2018, Guo et al., 2019, Zhao et al., 2019] and
Transformer [Guo et al., 2021, Shao et al., 2022, Jiang et al., 2023], which have shown effectiveness in
time series forecasting while incorporating the spatial adjacency between traffic sensors. However, we

argue that there still remain key points for improvement in traffic forecasting domain.

1.2.1 Construction of an Accurate Sensor Adjacency Network

Existing studies [Li et al., 2018, Yu et al., 2018, Zhao et al., 2019] construct a sensor adjacency matrix
based on distance-based proximity. However, these studies exhibit a deficiency in providing compre-
hensive justification for an adjacency matrix construction methodology. For example, the authors of

DCRNN defines the sensor adjacency matrix as follows:

. )2
exp (_dt(ai)) if dist(vi, v;) < &,
1 —

0, otherwise.

where A;; represents the edge weight between sensor v; and sensor v;, dist(v;, v;) denotes the road
network distance from sensor v; to sensor v;, o is the standard deviation of distances, and « is the

threshold. However, for the value of o, if we simple use as standard deviation of distances, it tends

5A review from the CIKM conference at the time is included: https://smhanlab.com/cikm23-review.txt
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to variate significantly depends on dataset for how much we construct connection between the sensors.
While will be mentioned again later chapter, the measured standard deviations of distances are 4.97 miles
(METR-LA), 3.93 miles (PEMS-BAY), and 6.92 miles (PEMSDT) respectively. However, it is important
to note that the specific o value can significantly fluctuate depending on the measured distances between
sensors and density of their connections on the dataset, which can potentially challenge the previous
approach. Plus, the authors of DCRNN used a threshold distance  of 10 miles to construct the adjacency

matrix, while there is no sufficient reasoning for this justification.

Alum Rock

G2

Figure 1.3: Problem of Data-driven Trainable Sensor Adjacency Models.

Recently, several models [Shang et al., 2021, Wu et al., 2019, Guo et al., 2021, Shao et al., 2022] have
attempted to propose trainable adjacency matrix by learning from data distribution. For example, GTS
[Shang et al., 2021] employs both hard and soft Gumbel-Softmax techniques to construct a trainable
sensor adjacency matrix. However, they may generate artificial connections, leading to an inaccurate
representation of the sensor network. As illustrated in Figure 1.3, traffic sensors in two geographically
distant areas (A, B) may exhibit similar congestion patterns during morning rush hours, where the
sensors are not physically connected. If data-driven sensor adjacency is applied, the Al model may infer

that these sensors are correlated and mistakenly conclude that they are adjacent.

1.2.2 Addressing Individual Sensor Spatial Heterogeneity

Each traffic sensor is situated within a unique built environment, resulting in diverse congestion patterns.
For instance, congestion due to rush hour may occur only in specific lanes or sensors. Even in close
locations, different patterns can emerge due to factors such as the number of sensor lanes, entry and
exit lanes, and installation positions. Figure 1.4 illustrates that the same speed of 60 miles per hour
(mph) may be considered relatively congested at sensors #400723 and #400253, while being a common
occurrence at sensor #400514. While previous work such as [Guo et al., 2021] has addressed this issue
by leveraging spatial positional encoding, the primary focus has been on handling positional encoding

for Transformer models rather than normalizing the patterns of individual sensors.
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Figure 1.4: Histogram Representing Sensor Heterogeneity in Speed Values.

1.2.3 Integration of Urban Human Activity

Drop-off Kid
at School

Figure 1.5: Daily Human Activity of a Person

Human activities, such as commuting, significantly influence traffic patterns and can lead to congestion.
Figure 1.5[Transportation Research Center (TRC) and Department of Civil and Coastal, 2007] illustrates
an example of a person’s travel patterns based on their daily activities. Previous studies have incorporated
one-hot encoding of temporal information such as day-of-week and time-of-day (hour, minutes) to capture
correlations between time and traffic patterns [Li et al., 2018, Guo et al., 2021, Zheng et al., 2020, Jiang
et al., 2023]. For instance, GMAN [Zheng et al., 2020] represents a day with T time steps® and encodes
the day-of-week and time-of-day for each time step using one-hot vectors in R” and R”, respectively.
These encodings are then concatenated into a vector in R7+7 as illustrated on Figure 1.6.

While temporal information offers valuable insights into human activities, it does not inherently es-

tablish direct causality, as traffic patterns are driven by human actions. Moreover, conventional temporal

6e.g. T = 288 when a day is divided into 5-minute intervals.

10
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Figure 1.6: Temporal Encodings leveraged in GMAN

encodings, represented by discrete values, often struggle to capture the complexity of continuous spatio-
temporal urban traffic congestion scenarios. Thus, it becomes essential to model the correlation between

traffic patterns and urban human activities, moving beyond a sole reliance on temporal information.

1.3 Contribution

This dissertation presents a novel framework to tackle the challenges of generating realistic vehicle travel
trajectories, aimed at enhancing the construction of sensor connectivity information. The proposed
solution leverages the A* algorithm to create travel trajectories and construct a sensor adjacency matrix,
which is subsequently integrated into graph-convolutional spatiotemporal models.

To address the spatial heterogeneity of sensor networks, a one-hot-based sensor encoding is em-
ployed, tailored to each sensor’s unique characteristics. This approach ensures adaptability to diverse
sensor environments. Additionally, to capture the relationship between human activity and traffic pat-
terns, diachronic urban travel activity frequencies—estimated at the target forecasting timestamp—are
incorporated, utilizing data derived from the National Household Travel Survey [U.S. Department of
Transportation, 2017].

The framework includes two spatiotemporal deep learning architectures: UAGCRN and UAGC-
Transformer. These models effectively integrate the constructed graph into graph-convolutional recur-
rent neural networks and graph-convolutional transformers, respectively. While both RNN-based and
Transformer-based temporal models are investigated, the results demonstrate that the RNN-based model
is sufficient for tackling the time-series traffic forecasting problem.

The proposed UAGCRN achieves state-of-the-art performance on standard traffic datasets, outper-
forming existing baselines. Furthermore, the effectiveness of the constructed graph is validated by its
positive impact on other spatiotemporal models. The scalability of the sensor and activity embedding
approach is also demonstrated by its successful application to purely temporal models, such as LSTM
[Sutskever et al., 2014] and Transformer [Vaswani, 2017].

To foster further research and development in this domain, the code, dataset, and experiment logs

from this study are made publicly available.”

"https://github.com/SuminHan/Traffic-UAGCRNTF
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Chapter 2. Literature Review

2.1 Spatiotemporal Deep Learning Traffic Forecasting Models

2.1.1 Proposal of the Traffic Forecasting Problem

In the deep learning community, two key studies that initially proposed the traffic forecasting problem are
DCRNN (ICLR-18)[Li et al., 2018] and STGCN (IJCAI-18)[Yu et al., 2018]. DCRNN and STGCN learn
spatiotemporal patterns based on traffic speeds measured from traffic sensors and propose incorporating
data from non-Euclidean spaces in graph form! into time-series models.

The Spatio-Temporal Graph Convolutional Network (STGCN)[Yu et al., 2018] effectively processes
spatiotemporal data on graphs by efficiently calculating high-order terms of the graph Laplacian matrix
using a Chebyshev polynomial approximation and uses a 1D-CNN to learn temporal changes. The
Chebyshev polynomial approximates spectral filters on the graph, allowing for filtering that reflects
the relationships between nodes and enables learning interactions between distant nodes. Through this,
STGCN implements a graph convolution operation that considers both spatiotemporal features, allowing
each node to efficiently learn its surrounding information without needing to calculate eigenvectors.

The Diffusion Convolutional Recurrent Neural Network (DCRNN)[Li et al., 2018] is designed by
integrating Diffusion Convolution, which models the diffusion process on a graph, with an RNN struc-
ture to solve spatiotemporal forecasting problems like traffic forecasting. Diffusion Convolution uses a
bidirectional random walk diffusion process to capture dependencies between nodes on the graph, where
each node propagates information from itself and its neighboring nodes. This approach allows DCRNN
to simultaneously learn spatial relationships in the traffic network and temporal dependencies through
the RNN structure. As a result, DCRNN effectively combines the information from complex graph
structures and time-series patterns to predict future states based on spatiotemporal data.

Between the two models (DCRNN and STGCN), I find DCRNN’s problem formulation and model
structure to be more intuitive, making it a foundational approach for addressing the traffic forecasting
problem in my thesis [Han et al., 2023]. The Seq2Seq traffic forecasting problem defined by DCRNN is

equivalent to finding the optimal function f that performs the following:

[Xt7p+1,...,Xt;g] l) [Xt+17"-7Xt+Q] (21)

Here, X; € RNXC represents the values from traffic sensors, with N sensors and C traffic channels
(such as speed, traffic volume, etc.). For the graph, G = (V, &, A) generally defines sensors as nodes, with
|[V| = N, and & represents edges, which indicate adjacency information between sensors. The adjacency
matrix A € RV reflects the information in £ and is used later in the Graph Convolutional Network
(GCN).

2.1.2 Traffic Datasets

International traffic forecasting research currently primarily utilizes U.S. data. Figure 2.1 shows the
METR-LA and PEMS-BAY datasets used in DCRNN, and the PeMSD7 (M, L) data used in STGCN.

1While 2D-Grid represented by  and y coordinates is referred to as Euclidean space, graph structures can be considered

as non-Euclidean space.
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These datasets are based on traffic information from Los Angeles (LA) and Santa Clara, near Silicon
Valley, in California, USA. STGCN uses LA data divided into PeMSD7(M) and PeMSD7(L), with
PeMSD7(M) covering a relatively smaller area and PeMSD7(L) a larger one. Notably, the PeMSD7(M,
L) data deals with urban data that includes downtown areas like Hollywood, unlike METR-LA.

z
n D)
5 L
9 ¥ %y
z
<
° ™
A —— counties
PeMSD7(L)
. PeMSD7(M)
(a) METR-LA (b) PEMS-BAY 118.5°W 118°W
(a) Dataset Proposed by DCRNN (b) Dataset Proposed by STGCN

Figure 2.1: (a) METR-LA and PEMS-BAY from DCRNN (b) PeMSD7 (M, L) from STGCN

2.1.3 Diffusion Convolutional Recurrent Neural Network

DCRNN]JLi et al., 2018] proposes the Diffusion Convolutional Recurrent Neural Network to solve the

traffic forecasting problem as Equation 2.2.

K-1
Xopxg fo= 3 (0 (D5'W)" + 642 (D7'WT)") Xy for pe{l,..P} (2.2)
k=0

DCGRU is a model that applies graph convolution (xg) 2 to GRU[Chung et al., 2014]. Similar to
ConvLSTM[Shi et al., 2015], it performs graph convolution within the internal r, w, and C' units that
constitute the GRU cell. The structure is further detailed in Equation 2.3.

O N (@T *g {X(t%H(tfl)} i br) ,
) =0 (@ xg [XO, HOD] 10,

(2.3)
C® — tanh (@C G [X(t), (r(t) ® H(t—l))} + bc) ;

g0 — O o gt=1 4 (1 _ u(t)) o0,
Then, this approach is used in Sequence-to-Sequence (Seq2Seq) modeling to predict the short-term

future. Typically, traffic forecasting utilizes data in 5-minute intervals, where the model reads the past

12 time steps (equivalent to 1 hour of patterns) and predicts the next 12 time steps corresponding to

2In general, the operation in one layer of a GCN is expressed as follows:

HUD — & (Df%Abf%HmW(U)

Each term is defined as follows: H(® is the node feature matrix at the I-th layer, WO is the learnable weight matrix of
the [-th layer, o is the activation function, A = A+1isthe adjacency matrix with self-loops added, and D is the diagonal
normalization matrix of A (ﬁii = j Aij). This formula represents the process of aggregating node features on the graph
from neighboring nodes and applying a non-linear transformation at each layer through learnable weights and an activation

function.
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Figure 2.2: Sequence to Sequence Encoder-Decoder of DCRNN

the following hour. Figure 2.2 shows the Seq2Seq structure of DCRNN, which uses an encoder-decoder
structure to make these forecastings. Similar to FC-LSTM[Seo et al., 2018a], this structure passes the
state of the encoder to the decoder, and the forecasting process begins by providing a “Go Token”

(usually a zero value).
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2.2 Advanced Spatiotemporal Traffic Forecasting Models

Traffic forecasting research has advanced through various methodological approaches. Figure 2.3 visually
shows the major development trends in traffic forecasting models, from DCRNNILi et al., 2018] and
STGCN[Yu et al., 2018] to the UAGCRNN[Han et al., 2023] proposed in this study.

First, FC-LSTM[Seo et al., 2018a], a Seq2Seq structure commonly used in language modeling,
was one of the initial models introduced for traffic forecasting, providing a foundation for time-series
data forecasting. Subsequently, DCRNNJLi et al., 2018] and STGCN[Yu et al., 2018] evolved from
FC-LSTM by integrating the temporal patterns of time-series data with the spatial relationships of
road networks. DCRNN was the first model to effectively reflect the spatiotemporal characteristics of
traffic forecasting by integrating recurrent neural networks (RNN) with graph structures, particularly
contributing by modeling interactions between adjacent roads through graph neural networks. STGCN,
which combined graph convolution and CNN structures, improved computational efficiency but was
considered less interpretable than DCRNN.

Later, GeoMAN/[Liang et al., 2018] and ASTGCN[Guo et al., 2019] introduced attention mechanisms,
adding the capability to emphasize important spatiotemporal factors in traffic forecasting. The attention
technique helps capture factors that impact traffic congestion by emphasizing certain times or regions
within the data. Graph WaveNet[Wu et al., 2019] applied the WaveNet[Oord, 2016] structure, known for
its strength in signal processing, to graph-based traffic forecasting, contributing to more precise temporal
pattern forecasting. These models achieved significant technical advancements in traffic forecasting but
were somewhat limited by their tendency to simply adopt popular structures from other Al research.

The Transformer[Vaswani, 2017] structure has had a substantial impact on AI research since its
introduction in 2017, showing high potential for application in traffic forecasting as well. GMAN[Zheng
et al., 2020], which applies this structure to traffic forecasting, uses the Transformer’s strength in time-
series processing to address spatiotemporal information together. However, there is still debate over
whether the Transformer’s advantages are fully realized in traffic forecasting, with some critiques sug-
gesting a need for specific approaches that optimize traffic data characteristics rather than following
structural trends.

More advanced models include GTS[Shang et al., 2021] and ST-ODE[Fang et al., 2021]. GTS in-
troduces the Gumbel Softmax[Jang et al., 2016, Maddison et al., 2016] technique to infer the adjacency
relationships needed for traffic forecasting, eliminating the need for pre-knowledge of sensor connection
information. ST-ODE applies ordinary differential equations (ODEs) to analyze traffic data as a con-
tinuous time flow, enhancing forecasting accuracy over time. Additionally, STEP[Shao et al., 2022] and
PDFormer[Jiang et al., 2023] propose an approach to improve forecasting performance by dividing traffic
data into small patches and training them within the Transformer structure. However, these models
have also faced criticism for a focus on minor performance improvements through the latest technology
without fundamental consideration of model persuasiveness or reliability.

Since 2019, deep learning-based models have been actively published in traffic-related journals. No-
table examples include T-GCNJ[Zhao et al., 2019] and Traffic Transformer[Cai et al., 2020], which aim
not only to improve performance but also to address practical issues in traffic forecasting. Journal
papers generally focus on real-world problems, distinguishing them from conference research, which pre-
dominantly presents pure Al research. Journals like Transactions on Intelligent Transportation Systems
(TITS), Transactions on GIS, and Transportation Research Part B and C focus more on models geared

towards practical problem-solving in areas such as traffic forecasting.

15



This study proposes UAGCRN[Han et al., 2023] to overcome the limitations of existing research,
moving away from trend-following structural adoption and aiming for model design that deeply un-
derstands and reflects the characteristics of traffic data. In particular, this model aims to account for
non-standard variations beyond repetitive patterns in traffic forecasting, addressing human mobility and

lifestyle patterns to contribute to practical problem-solving.
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Criticism

Existing studies have primarily adopted or modified model structures with the goal of improving the
performance of traffic forecasting models by incorporating the latest Al techniques. Conferences focused
on pure Al, such as NeurIPS, typically emphasize neural network techniques aimed at enhancing pattern
recognition or replacing human sensory functions, with a strong focus on performance improvement.
However, this approach diverges from the goal of designing AI that understands and assists humans.
Such studies often lack exploration of human actions and their causes, or fail to deeply consider the
specific requirements of a given domain. This contrast highlights the limitations of trend-driven research
in traffic forecasting, as opposed to the direction sought by HCI-AI research.

Most methods introduced in previous studies have been driven more by trends in Al research than
by a scientific or domain-specific approach. For instance, GraphWaveNet was inspired by the release of
WaveNet, while the popularity of the Transformer model led to the development of GMAN in traffic
forecasting. Although leveraging such trends can be valuable in some contexts, adopting them without a
deep understanding of traffic systems or human behavior risks leading to inconsistent research directions.
This lack of coherence, especially in a field like traffic forecasting that requires practical and reliable
solutions, can undermine the long-term value and impact of the research.

This trend often results in excessive focus on minor decimal-level performance improvements, and
in traffic forecasting, such minute enhancements are frequently accepted as significant contributions.
While this approach may be relevant in the early stages of research, questions arise as to whether
models developed for short-term performance improvement offer lasting usefulness. On the other hand,
models like DCRNNJLI et al., 2018], which reflect the spatiotemporal patterns of traffic data effectively
beyond their technical achievements, remain valuable, indicating the need for a scientific and fundamental
consideration in model development.

This dissertation aims not only for performance improvement but also for a deep understanding
and integration of human actions and their causes in traffic forecasting. Beyond merely learning data
patterns, traffic forecasting should reflect rapidly changing urban environments and irregular human
behaviors. This study seeks to enhance practical problem-solving capabilities by incorporating human-

centered thinking into traffic forecasting models.
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LibCity

LibCity[Wang et al., 2021] team® has organized the code for traffic forecasting models and neatly arranged
datasets, as shown in Figure 2.4. As of 2024, more than 56 traffic forecasting models and approximately
53 traffic datasets have been implemented and made publicly available. This collection includes not only
traffic forecasting but also code for various problems such as transportation demand forecasting and

traffic OD (Origin-Destination) flow forecasting.

@ Tradiional @ CNN - @ RNN - @ GCN @ Attention

TS

\

LibCity 56 models =
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Figure 2.4: Implemented Spatiotemporal models in LibCity

Shttps://libcity.ai/
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2.3 Human-Centered Understanding of Urban Mobility

This section introduces concepts for modeling improvements aimed at enhancing traffic forecasting
through a human-centered understanding. Unlike conventional deep learning approaches that primarily
model traffic flow systematically, this approach seeks to understand traffic phenomena from a human-

centered perspective.

2.3.1 Traffic Wave Theory
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Figure 2.5: Bidirectional Traffic Waves

Traffic Wave Theory, as illustrated in Figure 2.5[Wang et al., 2022], explains the phenomenon where
traffic congestion, particularly on highways, spreads like a wave, also referred to as “Traffic Snakes” or
“Traffic Shocks”. This theory demonstrates that traffic low can propagate forwards and backwards,
similar to physical waves, and is useful for explaining how human factors such as drivers’ reaction times
and distance control impact traffic congestion. By analyzing the patterns of congestion waves generated
by drivers, Traffic Wave Theory provides a foundation for traffic forecasting models to incorporate human
behavioral patterns and psychological factors.

The Dual-Walk Graph Convolution proposed in this dissertation (Section 3.2.4) is designed based on
Traffic Wave Theory, allowing simulation of bidirectional congestion wave propagation through 1-diffusion
while excluding DCRNN’s k-diffusion. In this process, Traffic Wave Theory enables more realistic and
interpretable traffic forecastings by reflecting the specific patterns of congestion propagation beyond mere
temporal data forecasting. By considering that traffic congestion forms and dissipates based on factors
such as drivers’ reaction speeds and distance-maintenance habits, this approach helps the model adopt
a human-centered approach in congestion scenarios.

While Traffic Wave Theory is particularly effective in explaining traffic flows on highways, its appli-
cability is limited in complex areas such as urban intersections or regions with intricate signal systems.
In urban environments, where various signals and physical obstacles disrupt the uniformity of traffic
flow, the propagation of traffic patterns does not resemble wave-like behavior. Consequently, this disser-
tation focuses on applying Traffic Wave Theory to freeway-based forecasting, recognizing that additional
theoretical frameworks are necessary to model more complex environments like urban intersections.

This human-centered approach not only aims to predict physical flow but also to improve the
reliability of traffic forecasting by reflecting how humans react and behave within traffic flows. If the
model can incorporate drivers’ reactions in congestion scenarios through Traffic Wave Theory, it will

provide a valuable foundation for solving practical issues, such as traffic congestion management and
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accident prevention.

2.3.2 Traffic Speed-Volume Relationship
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Figure 2.6: (a) Nonlinear Relationship Between Traffic Speed and Traffic Volume (b) Empty Road vs.
Congested Road

Traffic speed and traffic volume have a nonlinear relationship, which serves as an essential conceptual
basis for traffic forecasting modeling. For instance, as shown in Figure 2.6 (a)*, traffic volume increases
as speed increases until it reaches around 50 mph, after which the traffic volume no longer rises. This can
be easily understood in the context of highway conditions. When there are many vehicles on the road,
an increase in speed allows more vehicles to pass through. However, when the road is almost empty,
increasing speed does not significantly increase the actual traffic volume, demonstrating a nonlinear
characteristic. This relationship can be intuitively understood by comparing the empty and congested
roads shown in Figure 2.6 (b)®.

This nonlinear relationship between traffic speed and traffic volume is one of the key reasons deep
learning models are effective at learning complex patterns. Nonlinear functions can be learned through
the activation functions in deep learning; by stacking multiple layers of activation functions like ReLU,
these models can effectively capture nonlinear relationships. Based on this concept, the UAGCRN model
in this study uses a 2-stacked fully connected layer in the initial layer to learn the nonlinear relationship
between traffic speed and volume. This initial layer provides sufficient nonlinearity to specifically reflect
the relationship between speed and volume, enabling traffic volume forecasting that aligns with the
characteristics of the data.

The use of a 2-stacked fully connected layer in the initial layer of UAGCRN was inspired by the
structure of the GMAN model, but it goes beyond simply borrowing the structure. This study designed
this initial layer with the understanding that this nonlinear relationship is an essential feature of traffic
speed and volume forecasting. Experiments confirmed that learning this nonlinear relationship leads
to more accurate and interpretable results in real traffic volume forecastings. In particular, it enables
real-time adaptation to changes in the relationship between speed and volume, allowing for more flexible

performance across various traffic scenarios than traditional linear models.

4Figure from With traffic down, Oregon DOT can move more vehicles at twice the speed, By Chris McCahill
5Mario Villafuerte/Getty Images — Why do traffic jams sometimes form for no reason?
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By effectively learning the nonlinear relationship between traffic speed and volume, the UAGCRN
model reflects traffic flow variability and improves traffic forecasting performance in both congested and
high-speed sections. This design, which incorporates the nonlinear relationship, is a foundational element
that enhances interpretability and reliability in traffic volume forecasting, providing a methodological

basis for accurately capturing irregular patterns in real-world traffic flow.

2.3.3 Activity-Based Household Travel Surveys

Activity-based survey data, such as the U.S. National Household Travel Survey[U.S. Department of
Transportation, 2017] (Figure 2.7), Korea’s Household Travel Survey, and Floating Population data,
are critical for understanding human movement patterns and purposes, providing essential information
for traffic forecasting. These datasets classify origins and destinations as Home, Work, and Else, or
analyze destinations by time of day, allowing for visualization of movement patterns at specific times

and locations. For instance, Korea’s Floating Population data categorizes the origin and destination of

regional populations on an hourly basis, helping to accurately capture travel purposes and patterns.

v € National Household Travel Sur X+ - O X
< C 2% nhtsornl.gov & \@ H\ié)
e:}:\%‘%ﬁtvﬁor\;&y Home FAQ Login Compendium of Uses Documentation Downloads Publications Contact Us
National Household Travel Survey Announcements
Conducted by the Federal Highway Administration, the NHTS is the authoritative (%) NextGen NHTS TAC Meeting Open Sessions will be

available on Microsoft Teams on Nov. 13-14. See details here.
@ ‘The Summer 2024 NextGen NHTS Newsletter' is available
in Publications.
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Figure 2.7: National Household Travel Survey Webpage

Activity-based data from the U.S. and Korea is useful for comparing movement patterns between
countries and analyzing how regional characteristics or cultural differences influence travel behavior.
For example, Korea’s Floating Population data displays real-time movement patterns, which can reveal
congested areas and overcrowded zones during specific time periods. Such comparisons play an impor-
tant role in enhancing model flexibility and developing models that can be applied to various urban

environments.
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Figures 2.8 and 2.9 provide examples of Floating Population data and a graph visualizing movement
purposes by time and day of the week. These help predict the times and locations where traffic congestion
is likely to occur. In particular, Figure 2.9 clearly shows the differences in weekday commute times versus
weekend activity patterns, assisting traffic forecasting models in reflecting different travel characteristics

by time of day.

ym weekday hour orient destination | gender age type duration val OD WK HH orient_str destination_str

0 202112 o 23 1101053 1101053 F 15 WH 10 (12,12 1101053-1101053 6 167 1101053 1101053

1 202112 o 23 1101053 1101053 F 30 EE 10 | 2.39 1101053-1101053 6 167 1101053 1101053

2 202112 el 23 1101053 1101053 F 30 WH 10 | 235 1101053-1101053 6 167 1101053 1101053

3 202112 o 23 1101053 1101053 F 30 EH 10 | 2,37 1101053-1101053 6 167 1101053 1101053

4 202112 | 23 1101053 1101053 F 30 HW 10 | 235 1101053-1101053 6 167 1101053 1101053
316754 202112 o 23 39000 1125074 F 55 EH 80 | 3.25 39000-1125074 6 167 39000 1125074
316755 202112 o 23 39000 1125074 M 10 EH 30 | 6.55 39000-1125074 6 167 39000 1125074
316756 202112 o 23 39000 1125074 M 30 EH 70 | 2.36 39000-1125074 6 167 39000 1125074
316757 202112 o 23 39000 1125074 M 45 EH 50 | 3.16 39000-1125074 6 167 39000 1125074
316758 202112 o 23 39000 1125074 M 50 EH 60 | 6.54 39000-1125074 6 167 39000 1125074

Figure 2.8: Sample of Seoul Floating Population Movement Data
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Figure 2.9: Graph of Floating Population Movement Data in Seoul by Day and Hour

However, survey and floating population data have certain limitations. Surveys rely on respondents’
subjective assessments, which makes it challenging to perfectly capture actual movement patterns, and
they also have limitations in collecting real-time data. Floating population data, likewise, only reflects
movement in specific regions or times, which can result in temporal or spatial constraints. To overcome
these limitations, complementary methods are needed, such as combining activity-based data with real-
time data or introducing more detailed analysis techniques to improve the accuracy of movement pattern
analysis.

Such an activity-based approach holds value beyond merely collecting movement data. By identi-
fying movement patterns based on specific times and purposes, it is possible to provide tailored traffic
services to anticipated congestion areas or to plan public transportation deployment according to travel
purposes. This study aims to incorporate activity-based data into traffic forecasting models, devel-
oping a predictive model that considers movement characteristics by time and destination, ultimately

contributing to solving real-world problems.
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2.3.4 Origin-Destination Based Movement Behavior

(a) Random Walk (b) Levy Flight (c) Trapline Foraging
Figure 2.10: (a) Random Walk (b) Levy Flight (c) Trapline Foraging

There are various models to simulate human movement patterns, each reflecting specific characteristics
of movement behavior. For example, the Random Walk model represents a simple pattern of random
movement (Figure 2.10 (a)), while the Levy Flight model involves occasional long-distance movements
amid random movement (Figure 2.10 (b)). The Trapline Foraging model simulates the pattern of animals
following a regular route to search for food, allowing for the modeling of repetitive yet efficient paths
(Figure 2.10 (c)).

These models are useful for understanding movement patterns, but humans differ from animals in
that they tend to prefer the shortest path to a destination. For instance, humans typically move toward
a specific destination rather than engaging in random movement without purpose and tend to optimize
routes based on factors such as traffic conditions or efficiency. Moreover, humans engage in a wider range
of activities and follow diverse routing plans, making it challenging to apply straightforward walking
models. Therefore, simple models like the Random Walk or Trapline Foraging models are insufficient
to fully explain human movement patterns. However, ethical concerns may arise in directly studying
human movement patterns, so some research approaches gain insights into human movement by studying
animal movement patterns. For example, previous studies using movement data from animals, such as

cats, serve as one example of this approach [Bischof et al., 2022].

Figure 2.11: Node2Vec Illustration

The Node2Vec model, a random walk-based approach, is designed to capture relationships between
nodes in a graph by calculating the probability of returning to a specific node (p) and the probability
of jumping to a new node (g), enabling the exploration of various paths within the graph (Figure 2.11).
While this is effective for graph-based network analysis where random exploration is crucial, it differs

significantly from human movement patterns, which are more destination-oriented. Human movement
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typically focuses on efficiently reaching specific destinations, necessitating methods that account for
destination-driven behavior rather than simple random walks. This limitation is also highlighted in
Road2Vec[Wang et al., 2020], where the authors note that conventional approaches relying on random
walks fail to accurately capture the movement behaviors of mobile road users, who often prioritize
shortest paths when traveling from sources to destinations.

In this dissertation, urban areas are divided into grids, and the A* algorithm is employed to simulate
probable travel paths. To introduce variability, a small probabilistic variation is applied to account for the
likelihood of using freeways. Additionally, the co-occurrence probabilities of sensors are used to construct
a sensor adjacency matrix, which is then utilized in a graph convolutional recurrent neural network.
However, this random path generation could be enhanced by incorporating a deeper understanding of

human activities, leveraging factors such as land use, transportation services, and points of interest
(POIs).
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Chapter 3. Human-Activity-based Traffic Forecasting Models

3.1 Problem Formulation

We begin by formally defining the problem of spatiotemporal traffic prediction. We introduce a sensor
adjacency graph G = (V,E,A), where V represents the set of sensors, F denotes the set of edges
representing sensor adjacency, and A represents the adjacency matrix. Hence, N = |V| signifies the
number of traffic sensors in the graph. At each time step ¢, the traffic values of the IV sensors are
represented by X; € RY. Additionally, we consider the frequency of urban human activity at time step
t, denoted as H; € RE#  where Ky indicates the number of categories for human activity.

Our problem is to learn a function f that predicts the next @ timesteps of traffic values, given a
historical sequence of P timesteps of traffic values and P + @ timesteps of estimated human activity

frequencies H;_py1,... 14Q-

(Xi—py1, Hi—pg1), -, (Xy, Hy): G 4 [(Xit1, . Xi1 0] (3.1)

3.2 Methodology

In this section, we present the methodology employed to address the traffic prediction problem. Our
approach is composed of three key contributions: refined proximity graph construction, spatial sensor
embedding, and urban activity embedding. These contributions form the foundation for our model archi-
tectures, namely UA-GCRN and UA-GCTransformer, which incorporate the Graph Convolutional Re-
current Network (GCRN) and attention-based Graph Transformer, respectively, as illustrated in Fig.3.4
and3.5. The term UA denotes the combination of sensor embedding (SE) and activity embedding (AE)

added to the input of the encoder and decoder, to distinguish our approach.

3.2.1 Graph Construction
Travel path generation

We partition the region in which traffic sensors are located into a grid of size NV I(LIGﬁd) X NIES i) 1o generate
plausible paths for each pair of grid regions, we employ the A* algorithm [Hart et al., 1968], resulting
in a set of paths, M(“¢™). The A* algorithm efficiently explores the search space by combining uniform
cost search and greedy best-first search. It selects the edge with the minimum cost as it progresses.
In the A* algorithm, the cost of the next step movement is determined by the distance of the road,
enabling the identification of the shortest path. By applying a coefficient to the cost of freeways during
path generation, less than 1, we can obtain multiple paths with varying levels of freeway usage (see
Figure 3.1). An exemplary stacked visualization of the generated travel paths and sensor appearances

along a path is presented in Figure 3.2.

Sensor Adjacency Matrix Construction

Firstly, we define the distance between two sensors, v; and v;, taking into account the road direction

that can be traveled by car. Here, i,j5 € 1,..., N represent the sensor indices. In our research, traffic
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Figure 3.1: The A* algorithm is utilized to generate travel paths between the origin (red) and the
destination (orange), sampled from a grid pair, with different costs of using the freeway: the ideal
shortest path (blue), and paths that make greater use of the freeway (pink, cyan). The gray markers
represent the traffic sensors, which do not necessarily appear on the generated travel paths (in METR-

LA).

sensors are installed on one-way freeways where sensors can be reached in consecutive sequences. As a
result, the distance matrix is directed, implying that dist(v;, v;) # dist(v;, v;).

To construct the adjacency matrix, we apply a Gaussian filter to the distance values. The distance-
based proximity matrix between sensors v; and v; is computed as Al(-]D) = exp (— W) if dist(v;, vj) <
K else 0. While previous works [Li et al., 2018, Yu et al., 2018] leveraged standard deviation ! for o and
encountered ambiguity in selecting x, we consider the specific characteristics of the traffic data. Taking
into account the average traffic speed of approximately 60 mph (see Tab. 3.1) and an average distance
traveled of 5 miles every 5 minutes (1 time-step), we set ¢ to 5 miles. Furthermore, we choose & to be 80
miles, representing the maximum distance that can be covered within one hour (12 time steps), which
aligns with the observed maximum speed. As demonstrated, the justification for o and & is considerably

clearer compared to that of DCRNN.

I The measured standard deviations of distances are 4.97 miles (METR-LA), 3.93 miles (PEMS-BAY), and 6.92 miles
(PEMSDT) respectively. However, it is important to note that the specific o value can significantly fluctuate depending on

the measured distances between sensors, which can potentially challenge the previous approach.
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(a) Stacked Generated Paths (b) Sensor Appearence on a Path

Figure 3.2: (a) Stacked visualization of generated travel paths. (darker color — frequency of the sensor

appearance) (b) A travel path contains OSM node IDs and sensor IDs like a sentence.

Figure 3.2 (b) illustrates that multiple sensors can appear along a single generated path. In order to

incorporate generated travel trajectories, we calculate the co-occurrence-based[Strehl and Ghosh, 2002]
(S)

i; » which measures the likelihood of paths between sensor nodes as follows:

adjacency matrix A

A _ # paths v;, v; co-appear in M(Gen)

i =
\/# paths v; appears x # paths v; appears in M

(3.2)

Gen)

To obtain the final adjacency matrix to be used for graph convolution, we apply element-wise

multiplication of the distance matrix and the co-occurrence matrix as A = AP) © A9,

3.2.2 Sensor Embedding

Each traffic sensor is situated within a unique built environment, resulting in distinct meanings in the
actual traffic speed values. However, obtaining reliable sensor metadata to understand these variations
is currently limited. To overcome this challenge, we adopt a similar strategy as described in [Guo
et al., 2021], which involves the use of D-dimensional sensor embeddings (SE) generated through one-hot
encoding of the N sensors. By incorporating these sensor embeddings, into the input of the encoder and

decoder of our models, we can account for the individual characteristics of each sensor.

3.2.3 Activity Embedding

Urban human activity, driven by diverse travel purposes, significantly contributes to traffic congestion
[Bowman and Ben-Akiva, 2001, Bhat et al., 2004]. To capture the temporal variations in human activ-
ity, we construct the activity frequency based on a weekly pattern derived from the National Household
Travel Survey [U.S. Department of Transportation, 2017], as depicted in Fig. 3.3. This allows us to cre-
ate a representation Hy_py1.. 110 € RE# that captures the estimated human activities for households
at timestamp ¢t — P + 1,...,t + Q. Subsequently, we first normalize the activity frequency with stan-
dard deviation, and is transformed into a D-dimensional activity embedding using a two-stacked dense
layer followed by a normalization layer. To incorporate activity embedding into our models, we include
AE;_py1,.. ¢ to the input for the encoder, and AE; (1 . ;g to the input for the decoder by addition,
along with sensor embeddings. This allows our models to leverage the contextual activity information

in both the encoding and decoding stages.
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Figure 3.3: Urban human activity frequencies from the National Household Travel Survey for Activity
Embedding.
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Figure 3.4: Model Architecture (UA-GCRN)

In this section, we present UA-GCRN and UA-GCTransformer as the fundamental models that embody
our proposed approach. However, variations of our models, such as UA-LSTM and UA-Transformer, can
be implemented without utilizing graph convolution while still considering sensor and activity embedding.
To leverage the constructed graph, we introduce dual-walk graph convolution. Additionally, we explore
the application of dual-walk graph convolution in two different temporal deep learning methods: recurrent

neural network (RNN) and Transformer.

Dual-walk Graph Convolution

We utilize a dual-walk graph convolution approach that combines both diffusion and reverse processes.

This involves performing a multi-graph convolution using forward walk, backward walk, and the identity
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matrix. The motivation behind employing dual-walk convolution is to address traffic congestion that
can occur in both directions due to traffic waves [Daganzo, 1994]. The dual-walk graph convolution is
equivalent to a single-step dual-walk diffusion convolution, which was initially proposed in [Li et al.,
2018], expressed as follows:

9oc ZYD = [0,(D, L A) + 62(D;,AT) 4 00(1)] 2 (3.3)

out

Here, 6y, 61,05 represent trainable variables, and D,,; and D;, are out-degree and in-degree diagonal
matrices of A, respectively. Additionally, we can efficiently perform sparse-matrix computations as our

adjacency matrix is sparse.

Graph Convolutional Recurrent Network

We apply dual-walk graph convolutional on GCRN [Seo et al., 2018b, Li et al., 2018] as illustrated in
Fig. 3.4. Our UA-GCRN module is equivalent to single-step dual-walk diffusion of DCRNN with sensor
and activity embedding. The reason for employing a single-step instead of a multi-step approach, is due
to the incorporation of well-engineered sensor connectivity within our graph structure, rendering the
multiple diffusion unnecessary. This is experimentally demonstrated in Sec. 3.4.2. Moreover, a single

GCRN module still can accumulate graph convolution of each time step to enable multi-step prediction.

Graph Convolutional Transformer

The Transformer architecture [Vaswani, 2017] has achieved remarkable performance in language mod-
eling tasks, leading to various attempts to adapt its structure for other domains. However, recent
studies have relied on learnable positional encoding or learnable graph computation techniques [Zheng
et al., 2020, Cai et al., 2020, Shao et al., 2022, Jiang et al., 2023]. Interestingly, no existing model has
successfully demonstrated the effectiveness of a basic Transformer on traffic prediction, without graph
self-learning or modification in positional encodings. In our UA-GCTransformer model, we adopt the
original Transformer architecture and utilize sinusoidal positional encoding to distinguish input and
output sequence orders as Fig. 3.5. Additionally, we incorporate dual-walk graph convolution in each en-
coder and decoder layer, similarly in [Guo et al., 2021]. This approach explores the potential of language

modeling while leveraging the power of graph convolution.

3.3 Experimental Setting

3.3.1 Data Description and Preprocessing

We provide a description of the datasets used in our study and the corresponding preprocessing steps.
Table 3.1 presents the statistics of datasets, including the number of nonzero weights (NNZ) in the

adjacency matrix, and the mean betweenness centrality of our adjacency graph.

Traffic Datasets

We utilize three well-known traffic datasets: METR-LA [Li et al., 2018], PEMS-BAY [Li et al., 2018],
and PEMSD7 [Yu et al., 2018]. These datasets contain information about traffic speeds recorded by

sensors, as well as the original sensor adjacency matrix provided by the authors.

30



Table 3.1: Data statistics (B.C.: Normalized Betweenness Centrality). *PEMSD?7 only contains week-
days.

‘ METR-LA PEMS-BAY PEMSDT*

# sensors (V) 207 325 228
Mean (mph) 54 (£20) 62 (£10) 59 (+13)
Data size 34,249 52,093 12,652

Start time Mar/1/2012 Jan/1/2017 May/1/2012
End time Jun/30/2012  May/31/2017  June/30/2012
# OSM roads 75,046 36,987 122,201
NG o NGHD 9513 (2mi)  9x9 (2mi)  8x12 (3mi.)
|M(Gen)| 105,361 46,205 66,510
Legacy Adj. NNZ | 1,722 (4.0%) 2,694 (2.6%) 8,100 (15.6%)
Our Adj. NNZ | 8,575 (20.%) 12,628 (12.0%) 7,135 (13.7%)
Mean B.C. Ours | 3.04 x 1073 2.48 x 1073 3.32 x 1073

Open Street Map (OSM) Dataset

To accurately match the sensor locations to the corresponding roads, we leverage Open Street Map[Ope,
] data for the regions covered by the METR-LA, PEMS-BAY, and PEMSD7 datasets. We observed that
the locations of some sensors do not align precisely with the OSM roads. In such cases, we updated the
latitude, longitude, and freeway details of those sensors using the Caltrans Performance Measurement
System (PeMS) [PEM, ].

Urban Activity Dataset

To incorporate urban human activity information, we extracted data from the National Household Travel
Survey [U.S. Department of Transportation, 2017]. This dataset contains 828,438 travel surveys that
include information about travel start and end times, as well as the mode of transportation (including
car usage). We constructed an activity frequency histogram with a 5-minute resolution and smoothed
pattern with a Gaussian filter (sigma=2) and used it as an input for activity embedding in our model.

The number of activity categories is Ky = 9 and is described in Fig. 3.3.

Travel Path Generation

We conduct the travel path generation as illustrated in Sec. 3.2.1. We partition the area around the
sensors into square grids of 2-3 miles, including padding, resulting in N I(LIGrid) X N‘ES ) orids. For
(NI({Grid) X Né?rid))Q pairs of grids, we attempt to generate a travel path using the A* algorithm. We
perform this process 5 times with 3 different freeway costs (1.0, 0.9, 0.8 multiplied to freeway road length)
for each grid pair as described in Fig. 3.1, resulting in a maximum of 15 roads being created?. As a

(Gen)

result, we can generate M travel paths to construct our co-occurrence and distance-based adjacency

matrix. As an example, the adjacency matrix of PEMSD?7 is visualized in Fig. 3.7.

2Note that there can be cases where a path is not established.
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3.3.2 Evaluation Setup

In our experiments, we evaluate MAE (Mean Absolute Error), RMSE (Root Mean Square Error), and
MAPE (Mean Absolute Percentage Error) at 3, 6, and last (12 in METR-LA, PEMS-BAY, 9 in PEMSD7)
step of prediction.

We utilized the following parameter settings: a batch size of 32, a hidden embedding dimension®
D of 64, and the Adam optimizer with an initial learning rate of 0.01. We employed a patience of 5
for early stopping and reduced the learning rate to 1/10 after 2 trials. For the Transformer models, we

employed 8 attention heads, a key dimension of 8, a total dimension of 64, and stacked 3 layers.

3Dimension of 64 is a frequently employed choice for DCRNN, GTS, and GMAN.
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Figure 3.5: Model Architecture (UA-GCTransformer)
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Table 3.2: Forecasting error in METR-LA, PEMS-BAY, PEMSD7 datasets. t represents the model leveraging our co-occurrence and distance-based adjacency

matrix.

*

represents the model self-trains the sensor adjacency. Best and second best results are represented as BOLD and underline.

Temporal Only Spatiotemporal
e} jumy -+
S E oz | E =2 g& ., & 3 & . | & E
werc | £ F B Z 3| B g & g £ 2 B |8 g
5 = < 5 2 Q © % O o @ < =
3 = A =) =
= | MAE | 402 3.09  3.07 282 281 2.77 2.67 2.67 2.88 2.69 2.77 2.61 2.64 2.63
E| RMSE | 869 6.0  6.09 556  5.58 5.38 5.21 5.27 5.74 5.15 5.48 4.98 5.09 5.07
2| MAPE | 94%  82%  81% | 7.5%  T.6% | 7.30%  6.89% T.21%  7.62%  6.90% 7.25% 6.60% | 6.77%  6.71%
3 =| MAE | 5.09 3.79  3.76 3.19 3.8 3.15 3.06 3.04 3.47 3.07 3.07 2.96 2.97 2.96
& E RMSE | 11.13  7.66 7.65 6.59 6.61 6.45 6.30 6.25 7.24 6.22 6.34 5.97 6.08 6.04
§ ® | MAPE | 122% 10.7% 10.6% | 9.1%  9.1% | 8.80%  838% 841% 9.57%  837% 8.35% 7.96% | 8.10%  8.08%
= | MAE | 680 490 488 3.56  3.54 3.60 3.56 3.46 4.59 3.53 3.40 3.37 3.35 3.34
£ | RMSE | 1421  9.68  9.67 7.55 7.52 7.59 7.52 7.31 9.40 7.37 7.21 6.99 7.12 7.02
B | MAPE | 16.7% 14.9% 14.8% | 10.6% 10.7% | 10.50% 10.15% 9.98% 12.70% 10.01% 9.72% 9.61% | 9.68%  9.65%
= | MAE | 160 1.45 1.45 1.32 1.33 1.38 1.29 1.34 1.36 1.30 1.34 1.26 1.30 1.30
E | RMSE | 3.43 3.16  3.16 282 285 2.95 2.72 2.83 2.96 2.74 2.82 2.73 2.73 2.76
o S| MAPE | 32%  3.0%  3.0% | 2.8%  2.8% | 2.90%  2.69% 2.82% 2.90%  2.73% 281% 2.59% | 2.71%  2.75%
S| 2| MAE | 218 1.98 1.98 1.63 1.63 1.74 1.62 1.66 1.81 1.63 1.62 1.55 1.61 1.61
% | E| RMSE | 4.99 461 4.61 3.77  3.78 3.97 3.68 3.78 4.27 3.70 3.72 3.58 3.68 3.70
E B | MAPE | 4.7%  45%  45% | 37%  37% | 3.90%  3.62% 3.77%  A17%  3.67%  3.63% 3.43% | 3.62%  3.64%
& = | MAE | 3.05 2.72 2.71 1.89 1.88 2.07 1.92 1.95 2.49 1.95 1.86 1.79 1.87 1.86
E | RMSE | 7.01 6.28  6.27 4.41 4.40 4.74 4.45 4.43 5.69 4.52 432 4.20 4.37 4.33
B | MAPE | 6.8%  68%  6.7% | 45%  4.4% | 4.90%  4.52%  4.58%  5.79%  4.63% 4.31% 4.18% | 4.39%  4.36%
= | MAE | 249 2.35 2.37 213 213 2.21 2.10 2.21 2.25 2.31 2.30 2.09 2.05 2.06
E | RMSE | 465 448 451 403 412 4.21 3.98 4.16 4.04 4.44 4.39 3.99 3.87 3.93
= | MAPE | 57%  55%  55% | 51%  51% | 5.14%  4.91% 5.15%  5.26%  541% 5.66% 5.00% | 4.85%  4.86%
S| 2| MAE | 351 3.31 3.33 2.71 2.69 3.01 2.75 2.95 3.03 3.26 2.71 2.66 2.61 2.59
S| E|RMSE | 677 649  6.53 537  5.49 5.96 5.45 5.74 5.70 6.41 5.35 5.37 5.20 5.22
A B | MAPE | 83%  81%  81% | 6.9%  6.9% | 7.43%  6.85% 7.43% 7.33% 8.11% 6.87% 6.80% | 6.56%  6.50%
= | MAE | 431 4.05 410 3.01 2.98 3.59 3.19 3.47 3.57 4.63 2.99 2.95 2.92 2.90
E | RMSE | 8.32 7.89 7.99 6.10  6.13 7.14 6.39 6.78 6.77 8.81 5.94 6.03 5.90 5.91
P | MAPE | 104% 103% 10.3% | 7.9%  7.8% | 9.18%  824%  9.06% 8.69% 12.40% 7.70%  7.74% | T.58%  7.48%




3.4 Results

3.4.1 Performance Comparison

We have selected several baselines for comparison with our proposed UAGCRN, UAGCTransformer.
The baselines include*: Last Repeat, LSTM, Transformer[Vaswani, 2017], DCRNN[Li et al., 2018],
GTS[Shang et al., 2021}, STGCN|[Yu et al., 2018], Graph Wavenet (GWNet) [Wu et al., 2019], GMAN[Zheng
et al., 2020], STEP[Shao et al., 2022].

Additionally, we also compare our proposed models with two variants: UA-LSTM and UA-Transformer.
These variants leverage activity and sensor embeddings but do not incorporate graph convolutions, en-

abling us to evaluate the impact of graph utilization.

Forecasting error

Tab. 3.2 presents the results of comparing various baseline models with our proposed models (UAGCRN
and UAGCTransformer). On the header of the table, { represents the model leveraging our co-occurrence
and distance-based adjacency matrix, and * represents the model self-learns the sensor adjacency, which
are GTS, GWNet, GMAN, and STEP.

Overall, the proposed models, UAGCRN and UAGCTransformer, consistently outperform the major
spatiotemporal baselines across all three datasets and various time intervals. Moreover, these models
outperform UALSTM and UATransformer, indicating that incorporating graph convolutions significantly
improves the accuracy of traffic forecasting models.

We further evaluate the effectiveness of our graph construction approach by comparing DCRNN,
DCRNN{, and GTS?, which share the same architecture. Notably, we observed that DCRNN{ out-
performs GTS, particularly on the PEMS-BAY and PEMSD7 datasets. The superior performance of
DCRNNT can be attributed to the fact that GTS considers all potential sensor connections, often re-
sulting in biased predictions. We also noticed this issue of trainable graph adjacency in GWNet, as it
exhibits significant errors on the PEMSD7 dataset. The sensor networks in the PEMSD7 dataset have
higher betweenness centrality (Tab. 3.1), indicating that the graph structure provides more valuable
information compared to other datasets. These complexities in sensor adjacency may also contribute to
the lower performance of the STEP model compared to our approach, as STEP relies on a data-driven
approach that may not accurately capture the intricate sensor relationships.

Moreover, our proposed UA approach, which includes SE and AE components, significantly improves
the performance of purely temporal models (LSTM and TF). UA-LSTM and UA-Transformer surpass
other spatiotemporal baselines such as DCRNN, GTS, STGCN, GWNet, and GMAN on the PEMS-BAY
and PEMSD7 datasets. This observation suggests that by incorporating (P + @) x N types of inputs,
which include both sensor index and urban activity context, our models are able to distinguish between
different sensor inputs and capture distinct activity contexts. This comprehensive input representation
empowers our models to generate accurate predictions for multi-step traffic forecasting tasks.

However, we observe limited improvement of Transformer over LSTM and UAGCTransformer over
UAGCRN. This can be attributed to the fact that traffic prediction involves relatively short time-series

4 Although we considered Traffic Transfomer[Cai et al., 2020] for its state-of-the-art performance, we encountered dif-
ficulties in finding a reliable dataset or test logs. We assume there might be confusion in metrics such as averaging over

multiple time steps.
5Results from [Shao et al., 2022] due to issues with GTS: https://github.com/chaoshangcs/GTS/issues
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Figure 3.9: METR-LA (UA-LSTM, UA-Transformer)

Figure 3.10: Ablation Test (RMSE) of our modules — Our Graph(G), SE, A on METR-LA.
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Figure 3.12: PEMS-BAY (UA-LSTM, UA-Transformer)

Figure 3.13: Ablation Test (RMSE) of our modules — Our Graph(G), SE, A on PEMS-BAY.
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Figure 3.15: PEMSD7 (UA-LSTM, UA-Transformer)

Figure 3.16: Ablation Test (RMSE) of our modules — Our Graph(G), SE, A on PEMSD7.
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steps, unlike in the case of large language models, where Transformers excel. Consequently, RNN models
continue to perform well in this domain.

Although our proposed models, UAGCRNt and UAGCTFT, are outperformed by STEP on the
METR-LA and PEMS-BAY datasets, STEP utilizes very long patches of input (e.g. P = 228 X 7)
and complex transformer architecture which allows it to capture more complex and intricate patterns.
This approach results in a heavier model that can handle larger contextual information, as it shows
better performance in longer timesteps. Despite the performance difference, our models still demonstrate
potential for improvement, which will be explained in Sec. 3.4.2. On the other hand, we believe that
studying STEP’s architecture and mechanisms can provide valuable insights to advance the state-of-the-

art in related models.

Computational Cost

We conducted a comparison of the computational cost for each model in their default settings in Tab. 3.3°.
In order to ensure a fair comparison we leverage the default settings of each model such as DCRNN with
3 diffusion steps, GMAN with L = 5. We were unable to precisely measure the computational cost of
STEP[Shao et al., 2022] under the same environment. However, during our experiments of STEP with
the PEMSD7 dataset (2.7 times smaller than METR-LA), each epoch took approximately 3.5 minutes
to train using 3 TITAN RTX GPUs. The total training time was approximately 5 hours. The result

shows that UAGCRN outperforms other models in terms of computational cost and training time.

Table 3.3: Computational cost of METR-LA under the same environment. The number of stacks is
L =5 in GMAN and L = 3 in UAGCTF{, while DCRNN, UAGCRN{ do not have stacked architecture
(L=1).

| DCRNN  GMAN  UAGCRN{ UAGCTF}

# Params 353,025 714,049 174,401 842,177
Train (m:s/ep.) 2:35 4:39 42s 4:26
Total Epochs 26 19 24 17

Total train time | 1:12:03 1:34:41 0:18:36 1:21:04

3.4.2 Ablation Study
Effectness of Graph, AE, SE

The results of the ablation test for each module are presented in Fig. 3.16. Specifically, Fig. 3.8,3.11,3.14
demonstrate the performance improvement of UA-GCRN and UA-GCTransformer when using our graph
compared to the legacy graph. These results indicate that our graph contains more traffic-related knowl-
edge regarding sensor correlation. Although the enhancement looks marginal when both the SE and AE
modules are given under the same conditions, it still highlights the potential for performance improve-
ment in less common situations.

Furthermore, Fig. 3.9,3.11,3.15 showcase the effectiveness of each SE and AE module on temporal-

only models, specifically UA-LSTM and UA-Transformer. The performance improves as these modules

6Tab. 3.2 is based solely on the original author’s implementation, while Tab. 3.3 is intended for evaluating computational

time under same learning framework (TensorFlow2) and GPU (RTX3090), batch size, and early stopping condition.
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are integrated. Notably, the impact of the AE module is more significant than the SE module, likely due
to traffic patterns exhibiting a stronger correlation with human activity. Additionally, incorporating the
SE module to account for sensor spatial heterogeneity further enhances performance. When both SE
and AE modules are integrated, the resulting performance surpasses that of DCRNN in the PEMS-BAY
and PEMSD7 datasets.

The number of diffusion steps of DCRNN with our graph

Figure 3.17 depicts the results of UADCGRU7Y obtained by applying the SE and AE to the DCGRU
model using our graph while modifying the diffusion steps. In contrast to the original findings discussed
in [Li et al., 2018] which suggested a demand for approximately 3 diffusion steps, our results show that
increasing the graph connectivity information, along with activity and sensor data, can lead to worse
performance. We analyze that vehicles do not follow a random walk pattern, and the vehicle travel

pattern is already adequately captured in our constructed graph.

K _diffusion=1 B K _diffusion=2 B K _diffusion=3

METR-LA PEMS-BAY PEMSD7
7- 61
6 =N
5 4

RMSE@3 RMSE@6 RMSE@12 RMSE@3 RMSE@6 RMSE@12 RMSE@3 RMSE@6 RMSE@9

Figure 3.17: Performance degradation in UADCGRUY as the number of diffusion steps (K) increases.

Comparison of Timestamp Embedding and Activity Embedding

Various models have employed different approaches to incorporate timestamp information. For example,
in DCRNN, the time of day is included as an additional input channel”. In this ablation study, we
compared timestamp embedding (TE), which are generated from a vector space {0, 1}7712%2% (one-hot
concatenation of weekday and time-of-day) and ingested in a 2-stacked dense layer with a normalization
layer to capture weekly and daily periodicity, similar to [Zheng et al., 2020, Jiang et al., 2023], with AE.

Tab. 3.4 shows the comparison results of UAGCRN{ with TE or AE, indicating that TE exhibited
a slight improvement over AE, performing almost as well as STEP in the METR-LA and PEMS-BAY
datasets, and outperforming AE in the PEMSD7 dataset. The performance improvement of the TE
over the AE can be attributed to the lack of analysis of localized activity patterns of each city when
we estimate human activity frequency which is derived from national surveys. This aspect suggests that
future studies should consider accurately inputting AE, such as localized activity estimation considering
demographics and urban function.

On the other hand, relying on one-hot timestamp information results in less explainability due
to its discrete nature, unlike continuous activity information. Additionally, it may pose limitations in

scalability when accounting for seasonal effects in long-term datasets, while our datasets are deal with

"Not mentioned in the paper, but in the code: https://github.com/1liyaguang/DCRNN
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Table 3.4: Ablation study of UAGCRNt and UAGCTFTt by replacing AE with timestamp embedding
(TE). Best and second best results are represented as BOLD and underline.

STEP UAGCRN{ UAGCTFt
TE+SE AE+SE | TE+SE AE+SE

MAE3 | 2.61 | 2.62 2.64 2.63 2.63

< | RMSE3 | 4.98 | 5.00 5.09 5.09 5.07
; MAE6 | 2.96 | 2.94 2.97 2.95 2.96
5| RMSE6 | 597 | 5.97 6.08 6.05 6.04
= [ MAE12 | 337 | 3.31 3.35 3.35 3.34
RMSE12 | 6.99 | 7.02 7.12 7.10 7.02
MAE3 | 1.26 | 1.28 1.30 1.28 1.30

7 | RMSE3 | 273 | 2.69 2.73 2.72 2.76
= | MAE6 | 1.55 | 1.60 1.61 1.59 1.61
Z | RMSE6 | 3.58 | 3.63 3.68 3.66 3.70
2 MABI2 | 179 | 188 1.87 1.86 1.86
RMSE12 | 4.20 | 4.38 4.37 4.37 4.33
MAE3 | 2.09 | 2.02 2.05 2.04 2.06

| RMSE3 | 399 | 3.81 3.87 3.88 3.93
21 MAE6 | 2.66 2.56 2.61 2.57 2.59
Z | RMSE6 | 537 | s5.14 5.20 5.16 5.22
“["MAE9 | 295 | 2.88 2.92 2.89 2.90
RMSE9 | 6.03 | 5.88 5.90 5.88 5.91

only a few months (Tab. 3.1). Nevertheless, we can still take advantage of the AE-based UAGCRN

model for its superior explainability.

3.4.3 Case Study

Fig.3.18 and Fig.3.19 present a case study illustrating the superior performance of UA-GCRNYt with our
graph, sensor, and activity embeddings. In both cases, the legacy graph includes incorrect connections
that cannot be reached from the target sensor, which causes wrong predictions.

In the METR-LA dataset (Fig. 3.18), UA-GCRNT achieves better congestion prediction even without
sensor and activity embeddings by accurately establishing connections between roads. This highlights
the effectiveness of our approach in constructing the graph, which significantly improves the model’s
performance.

Furthermore, in the PEMS-BAY dataset (Fig. 3.19), we observe that UA-GCRN{ performs even
better when provided with activity input. In this case, a high frequency of work activity is included in
the historical sequence, and possible shopping activity in the future sequence, which helps the model
there can be consequent congestion in the prediction steps. The results demonstrate the additional

benefit of incorporating activity information into the model, further enhancing its performance.
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3.4.4 Sensor Reactions Based on Activity Input

a) Input (30 mph all) b) 30 mph - pred1
.. o0

P>l
el o “
MONICE o [ ]
_ o
n o ‘
. % 4
Activity (Work) L & S - ag
- A
,"/‘ i ® m—-w?. ALK @ 5.00 A
i ELMONT /
. ) e «)
LOSANGELES / \ ® @ 3889
3 e
) = TORRANCE

LOS AN\:‘;LES

pMENICE ® e L 2.778
«)
M T 1.667
" e c
INGBEWOOD
DOWNE ¢) 30 mph —pred2 055 |O
) bl
\ AN I LT 0556 | R
LOSAN LES
) S e g i : 8‘)
: MSNICA o 1667 | &
) % o)
TORRANCE ® o y - ® 2778 |O
NGQgewooD § LV
DOWN -3.889
\ D P I ®
< e RV,
\\\..“' ’ > - 2 alK . _5
Activity-(Home) "\ .
Ra— S8/ o\ e
TORRANCE > ]
) —— [ ]
® o
M T

Figure 3.20: Sensor Reactions Based on Activity Information with UAGCRN (Red/Green: more/less

congestion)

We examine how sensors react differently when provided with different activity information. We con-
ducted tests by setting all sensors to a speed value of 30 mph during the P sequence while varying the
activity input, as illustrated in Fig. 3.20. The choice of 30 mph is for testing whether congestion would
increase or alleviate when the road capacity is full. We conducted two predictions of the next 15 min,
predl and pred2, by providing activity information for the morning rush hour (6:35 to 8:20) and the
evening commuting time (16:45 to 18:30), respectively.

Our findings revealed that sensors exhibited different behaviors based on the given activities. This
discrepancy is due to varying levels of road utilization associated with specific activities. Notably, even
when the same traffic values are given to the model, our model predicted distinct patterns as it had
learned the sensor’s typical response patterns corresponding to future activities. Overall, these analyses
highlight the importance of incorporating sensor embedding while inserting activity information into
traffic prediction models, as it leads to a better understanding of sensor reactions and enhances the

accuracy of congestion predictions influenced by urban human activity.



Chapter 4. Discussion

4.1 Discussion on Traffic Forecasting

4.1.1 About UAGCRN

Our current research focuses on enhancing activity-based traffic prediction models that consider spatial
and temporal factors while incorporating travel purposes. However, there are notable areas for refine-
ment. To enhance the realism of travel paths, it is essential to account for travel demands over time by
integrating real-time data such as transportation and social media, enabling accurate inference of road-
specific travel demands. Additionally, insights from building use, points of interest, and demographics
can deepen our understanding of travel purposes and traffic patterns. Moreover, employing traffic sim-
ulation for synthetic data generation offers the potential to uncover nuanced traffic behaviors beyond
our current A* algorithm-based approach. Exploring this dynamic route choice behavior using estab-
lished transportation research and Al techniques could yield more effective predictions. By refining our
methodology in these areas, future research can enhance the accuracy and applicability of our models,

allowing us to understand better and predict traffic patterns in urban areas.

4.1.2 Challenges in Applying UAGCRN to South Korea

I have dedicated significant efforts to applying various traffic forecasting models, including the seminal
DCRNN and GMAN, to Korean data and real-time floating population data in pursuit of practical
applications[Han et al., 2024]!. The proposal of UAGCRN[Han et al., 2023] emerged as a result of
questioning the reliability of existing models and re-evaluating their underlying assumptions during a
three-year journey of attempting to adapt American models to Korean contexts without critical review.

Through this process, I began to doubt the original DCRNN model, revisited its dataset for vali-
dation, and reconsidered the architectural simplicity proposed by alternative models. These reflections
culminated in the development of UAGCRN. However, I acknowledge and discuss the limitations that
make UAGCRN challenging to implement effectively in South Korea. These include differences in urban
dynamics, data characteristics, and infrastructure between South Korea and the U.S., which highlight

the need for models specifically tailored to the unique features of Korean urban environments.

1. High Population and Building Density: South Korea’s limited land area and the high density
of buildings and population in urban areas result in exceptionally complex datasets. Unlike in
the U.S., models must simulate significantly more movement paths within much smaller, highly

congested spaces.

2. Complex Traffic and Signal Systems: South Korea has an extensive traffic signal system, a
high volume of pedestrians, and a well-developed public transportation network. Features such as
Bus Rapid Transit (BRT) lanes add further constraints to the model. In contrast, the U.S. relies
on wide lanes and freeway-centric systems, which align better with models based on simpler road

structures.

L An Arxiv Paper initially submitted and rejected from AAAT in 2021.
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3. Diverse and Rapidly Changing Urban Environments: While planned districts like Gangnam
have relatively organized road structures, older areas such as northern Seoul feature irregular streets
and numerous alleys. Factors such as narrow alleys, illegal parking, and underground parking lots
contribute to sparse cases in simulations, increasing data complexity. Additionally, South Korea’s
urban infrastructure changes rapidly, exemplified by the introduction of transit systems like the

Seoul Station BRT within just a few years. Models must adapt to such dynamic changes.

4. High-rise Apartments and Commuting Patterns: The prevalence of high-rise apartments in
South Korea necessitates simulating commuting patterns, such as people traveling from residential
complexes to office buildings during rush hours. These patterns require finer-grained analysis that

differs significantly from those in American cities.

5. Dynamic Commercial Areas and Tourist Influx: South Korea experiences rapid changes
in commercial districts, influenced by real estate trends, permits for commercial facilities, and
fluctuating numbers of tourists. Incorporating these dynamic economic changes into the model

requires integrating additional datasets.

6. Diverse Taxi and Transportation Services: South Korea has a high number of taxis and a
diverse mix of transportation services, introducing additional variables for the model to consider.
Especially, citizens in South Korea primarily commute with subways rather than personal vehicles.

This complexity necessitates more sophisticated simulations compared to existing models.

7. Limitations in Pedestrian Simulations: South Korea’s streets are crowded with pedestrians,
narrow sidewalks, and frequent instances of jaywalking. Accurately simulating scenarios with
concentrated pedestrian activity is essential. Additionally, in alley environments, the shortest path
and the preferred path may differ. Failing to account for such discrepancies reduces the model’s

realism and reliability.

8. Lack of Real-time Data: In cities like New York, near-real-time public transportation data is
available at intervals as short as five minutes. In contrast, South Korea often relies on statistical
data published at hourly intervals, limiting the use of real-time data. This lack of real-time data

reflecting human activity poses challenges to improving traffic forecasting performance.

9. U.S.-centric Model Design: UAGCRN, like many traffic forecasting models, is primarily de-
signed for the relatively simple road structures and traffic patterns of U.S. freeways. This design
creates limitations when applied to South Korea’s complex, rapidly evolving urban environments

and traffic systems.

To effectively apply UAGCRN to South Korea, the model must be extended to reflect the country’s unique
urban structures and traffic characteristics. Addressing challenges such as high-density environments,
pedestrian-centered mobility patterns, and the scarcity of real-time data requires a novel approach that

integrates urban engineering data with real-time human activity data.
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4.2 Thoughts on True Future Prediction

“An unchanging world, sufficient as it is, cannot truly be called living. It is merely a world

of memories—a completed, closed world. I will refuse it.” — from a movie quote.

The future, I believe, is not something to predict but something to create. Current traffic prediction
models typically work with a short-term perspective of around 20 weeks, splitting the data sequentially
into 70% for training, 10% for validation, and 20% for testing. This means 14 weeks are used for training,
about 2 weeks for validation, and the remaining 4 weeks for testing. Since cities do not often undergo rapid
changes, these models can be updated with the latest data each time a prediction is required, thereby
achieving significantly better performance than traditional methods like ARIMA, SVM, or RFR.

However, to predict the kinds of transformative changes introduced by entirely new urban devel-
opments, as discussed in the introduction, one must constantly grasp people’s desires and engage in
conversations to understand them. Most importantly, one must track the flow of money. This could ex-
tend to seemingly minor details, such as which lectures by speakers are gaining popularity, what literary
works are trending, which music is resonating with audiences, which products or foods are favored, and
even which Netflix programs are being widely watched.

Two decades ago, physically labor-intensive workers might have relieved their stress by eating spicy
and salty food. However, the younger generation tends to approach food as an art form, valuing not only
taste but also presentation and the ambiance of the restaurant. Understanding such phenomena may
even require delving into the frustrations of young people dissatisfied with traditional jobs, including the
perspectives of unemployed youth, and comprehending the various social issues mentioned earlier in the
preface. With this understanding, older generations bear the responsibility of designing new futures for
education and industry.

That said, the youth also have responsibilities. If the existing world does not satisfy them, they
must create their own. Traditional education systems often evaluated students based on how well they
absorbed knowledge, using numerical scores as the standard for their value. As a result, someone might
be praised and put on the path to success simply for scoring better on a test, while others might face
despair and prematurely label their lives as failures. But isn’t life too precious to live day by day in
an unchanging routine, resigning oneself to the belief that they were born only to endure this? No
matter how successful a person may seem, they too have fears. Moreover, to have nothing is to wield an
incredible weapon—the lack of anything to lose.

Two hundred years ago, pursuing a dream might have meant risking one’s life. But thanks to the
sacrifices of unknown ancestors, we now live in a nation where dreams can be pursued without fear of
losing one’s life. Furthermore, rapid economic growth has created a society where people no longer starve
and benefit from incredibly convenient services, infrastructure, and welfare. How fortunate is that!

When you are determined, you find ways; when you are not, you find excuses. Money, too, is merely
an illusion of numbers—a means to achieve dreams. I hope the younger generation will appreciate the
country that their predecessors built, refrain from envy or jealousy, and recognize that all humans are
inherently equal. Rather than conforming to others’ expectations, trends, or visible societal standards,
I urge them to discover who they truly are, what they can do in their own positions, and what brings

them happiness. May they never lose confidence or hope and live for their own happiness.
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Chapter 5. Conclusion

This dissertation underscores the significance of incorporating real-world knowledge of urban human
activity into spatiotemporal traffic prediction models. By addressing key challenges such as accurate
graph construction, sensor heterogeneity, and human activity-based inference, this work presents a novel,
integrated framework that enhances the predictive power of traffic models.

The proposed approach introduces innovative components, including realistic travel path generation
using the A* algorithm, co-occurrence and distance-based sensor connectivity measures, sensor-specific
one-hot encodings, and embeddings that capture human activity dynamics. These components are
seamlessly integrated into graph-convolution-based spatiotemporal deep learning architectures, ensuring
a more nuanced and accurate representation of traffic patterns.

Through comprehensive experiments on real-world datasets, the proposed method demonstrates
superior performance over existing baselines, achieving state-of-the-art results. These findings reveal the
substantial impact of human activity insights on traffic prediction accuracy and contribute to a deeper
understanding of the interplay between urban vibrancy and traffic flow.

By bridging the gap between human mobility behaviors and data-driven traffic modeling, this re-
search lays the groundwork for future advancements in spatiotemporal forecasting. Potential extensions
include the integration of real-time urban data, further refinements of graph-based methods, and explo-
ration of adaptive models that can accommodate evolving urban environments.

Ultimately, this dissertation not only advances the technical landscape of traffic prediction but also
offers practical insights for urban planning, intelligent transportation systems, and smart city initiatives,

fostering more efficient and sustainable urban mobility solutions.
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