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Abstract. A reliable short-term transportation demand prediction sup-
ports the authorities in improving the capability of systems by optimizing
schedules, adjusting fleet sizes, and generating new transit networks. A
handful of research efforts incorporate one or a few areal features while
learning spatio-temporal correlation, to capture similar demand patterns
between similar areas. However, urban characteristics are polymorphic,
and they need to be understood by multiple areal features such as land
use, sociodemographics, and place-of-interest (POI) distribution. In this
paper, we propose a novel spatio-temporal multi-feature-aware graph
convolutional recurrent network (ST-MFGCRN) that fuses multiple areal
features during spatio-temproal understanding. Inside ST-MFGCRN, we
devise sentinel attention to calculate the areal similarity matrix by allow-
ing each area to take partial attention if the feature is not useful. We eval-
uate the proposed model on two real-world transportation datasets, one
with our constructed BusDJ dataset and one with benchmark TaxiBJ.
Results show that our model outperforms the state-of-the-art baselines
up to 7% on BusDJ and 8% on TaxiBJ dataset.

Keywords: Transportation Demand · Areal Feature · Multi-graph Con-
volutional RNN

1 Introduction

A reliable short-term transportation demand prediction supports the authori-
ties in improving the capability of transportation systems. However, this task
is challenging because the transit demand prediction depends on the complex
spatial and temporal correlation [1]. With the development of deep learning ap-
proaches to short-term transportation demand prediction, several models have
been proposed to deal with the spatio-temporal complexity in transportation
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Fig. 1: Similar travel patterns of areas with the same POI and demographics and
another data layer of land use (color represents the majority group).

demand [2,3,4,5,6]. For better prediction, first, temporal dependency should be
considered as each area shows similar transportation demand according to similar
time zones on the same day of the week, as well as historical transportation de-
mand for each timestep [7,8]. Secondly, spatial dependency should also be incor-
porated. According to Tobler’s first law of geography [9], the travel demand of an
area has significant spatial relation to the adjacent areas. Moreover, even distant
areas with a similar urban environment (e.g., land use, point-of-interests (POIs))
show similar travel patterns due to the comparable purpose of visit [10,11,12].

A handful of deep learning models incorporate areal features while learn-
ing spatio-temporal correlation for transportation demand prediction, such as
POI distribution [5,13,14,15] and demographics [6]. Despite promising results,
we argue that one important aspect has been overlooked in those efforts; they
represented an area with a very few features. Urban characteristics are poly-
morphic [16], and an area should be defined considering physical, social, and
cultural aspects through multiple data layers such as land use, sociodemograph-
ics, building types, POI distribution, and transportation infrastructures [17,18].
For example, three areas (A, B, C) in Fig.1 show a similar travel pattern (more
alighting in the morning and more boarding in the evening). This is expected as
they all have many offices, and people aged 25-45 are commuting to those areas
during workdays. However, there exists a difference observed in the area C –
small peaks in the early morning (6h) and daytime (13h, 16h), which could be
driven by other areal urban features such as land use. Thus, to better predict
future travel demand, it is necessary to devise a new method that can leverage
multiple areal features by considering their significance and correlation.

In this paper, we propose a spatio-temporal multi-feature-aware graph convo-
lutional recurrent network (ST-MFGCRN) model that ensembles multiple areal
similarity knowledge while preventing overfitting by sentinel attention4. First, to
capture the spatial relatedness of different time intervals, we split time-series in-

4 The code, data, and supplemental materials are available in this anonymous reposi-
tory: https://anonymous.4open.science/r/ST-MFGCRN-251B/

https://anonymous.4open.science/r/ST-MFGCRN-251B/
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put data into three kinds of time units (closeness, period, and trend). Our model
ingests each time-unit input with spatio-temporal embedding to capture trivial
spatio-temporal patterns. Then, we use our multi-feature graph convolutional
recurrent neural network to understand multiple areal similarity graphs while
finding spatio-temporal correlations. Here, the areal similarity is computed by
an attention-based mechanism from areal features. This attention mechanism
is improved with sentinel variables that allow each area to take partial atten-
tion when the areal feature is not helpful. Finally, we merge the three time-unit
outputs by our proposed weighted fusion mechanism to mix them properly. We
evaluate the ST-MFGCRN model with other existing schemes against two real-
world datasets. Here we summarize our contributions:

– We propose a novel deep-learning architecture for short-term transportation
demand prediction that incorporates multiple areal features while learning
spatio-temporal correlation.

– We analyze the impact of areal features to extract the best feature combi-
nation and highlight which areal features drive the best performance.

– Evaluation results show that the proposed ST-MFGCRN outperforms state-
of-the-art base-lines such as DeepSTN+ and GMAN up to 7-8%, and is also
resilient when many areal features are computed together.

2 Related Work

2.1 Spatio-temporal prediction methodology

For Euclidian dataset, a convolutional neural network (CNN) based spatio-
temporal model is mainly used [2]. ConvLSTM [3] is a model modified for time
series data by making 2D convolution in the matrix multiplication part of the
weight parameter of a LSTM. STResNet [4] and DeepSTN+ [5] learn spatial
information with 2D CNN for closeness, period, and trend, respectively, and time
series temporal information with 1D CNN. DeepSTN+ is a slightly advanced
form compared to STResNet in that it leverages a ConvPlus network, but both
are similar as they are CNN-based models.
For non-Euclidian dataset, a graph convolutional network (GCN) based
spatio-temporal model is mainly used [19,15]. DCRNN [20] proposes an RNN
model through random walk-based diffusion convolution based on the distance of
traffic sensor to learn graph-based spatio-temporal information. ASTGCN [21]
leverages spatial and temporal attentional graph convolution mechanism on
closeness, period, and trend components for road traffic prediction. GMAN [22]
creates performs spatial attention with node embedding, and temporal attention,
and combine with gated fusion.

2.2 Transit prediction with extra knowledge

A handful of researchers [5,4,13,6,15,23] have attempted to increase the pre-
diction accuracy by using ancillary information about the area, such as POI
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or demographics. There exist two major methods to utilize areal features—
concatenating each areal feature along with input data or generating a similarity
graph between areas and applying graph convolution. The former is a method of
obtaining a specific pattern from the transit demand value itself, and the latter
differs in that it utilizes information from areas with similar characteristics to
inference when performing prediction for each area. [5,4,13] correspond to the
former, although there are modifications such as using more fully connected lay-
ers or conducting addition instead of concatenation. [6,15,23,14] utilize Pearson
correlation, cosine similarity, or community detection by the Louvain algorithm
to construct similarity matrices.

2.3 Multi-graph spatio-temporal methodology

There are a few approaches that merges multiple graphs for spatio-temporal com-
putation. DMVST-Net[24] suggests semantic view on top of spatial view and
temporal view by creating data-driven semantic similarity graph by Dynamic
Time Wraping for taxi demand prediction. ST-MGCN[14] proposes multi-graph
convolution network consists of neighborhood, functional similarity, and spatial
connectivity for ride-hailing demand forecasting. Wang et al.[25] proposes het-
erogeneous multi-graph convolution network consists of spatial adjacency, trans-
port connectivity, and contextual similarity for ambulance demand forecasting.
AGCAN[26] leverages data-driven attention-based adaptive graph to supplement
along with physical connectivity graph for road traffic prediction.

3 Problem formulation

We define that the number of transportation areas is N , the number of input
channels is Cx (e.g. Cx = 2 for in/out demand of each area), and the demand
(e.g., number of passengers who aboard/depart the bus) on each timestamp at
Xt ∈ RN×Cx , and the spatial proximity graph between areas is GP . Assume
we want to use KN types of areal features, where k-th feature is Fk ∈ RN×Vk ,
where Vk is the number of components of Fk (e.g. VLU = 3 when the land use fea-
ture FLU consists of commercial/residential/office). The transportation demand
prediction problem can be defined as learning a model fmodel that predicts the
next-step value from historical values as:

fmodel(X1, X2, ..., Xt−1;GP , F{1,...,KN}) → Xt (1)

4 Method

4.1 Overview

We propose spatio-temporal multi-feature graph convolutional recurrent network
(ST-MFGCRN) described in Fig. 2a. Our method splits the historical value into
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(a) ST-MFGCRN architecture
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Fig. 2: (a) Proposed ST-MFGCRN architecture and (b) MFGCGRU cell. TEQ,
TEP, TEC represents the temporal embedding (TE) for trend, period, and close-
ness modules which convert into spatio-temporal embedding (STE).

three different time units – closeness (recent minutes), period (daily), and trend
(weekly) similar to previous approaches[5,4,27] as follows:

XC = {Xt, ..., Xt−Lc+1} ∈ RN×Lc×Cx ,

XP = {Xt−Tp+1, ..., Xt−TpLp+1} ∈ RN×Lp×Cx ,

XQ = {Xt−Tq+1, ..., Xt−TqLq+1} ∈ RN×Lq×Cx

(2)

where Lc, Lp, and Lq are the number of timesteps of closeness, period, and
trend values, respectively. Tc is the number of close sequences, and Tp is the
number of steps between periods while Tq is that for trends. For hidden input and
output between all modules, we use D as the embedding dimension in common.

4.2 Spatio temporal embedding (STE)

Spatio temporal embedding (STE) serves to capture and correct trivial spatio-
temporal bias for each area. Compared to GMAN [22] that leverages STE that
serves similar to positional encoding, our model directly adds to embedded input
value. We preprocess the temporal embedding (TE) as TEt ∈ RCT by concate-
nating each one-hot embedding of a time unit, where CT = 7 + 24 + 4 + 1:
weekday (7), hour-of-day (24), 15-min-unit-of-hour (4), national holiday (1).
Then, we apply a two-stacked fully connected layer fTE : RCT → RD to con-
vert TE into D-dimensional hidden embedding. Moreover, we define a trainable
spatial embedding SE ∈ RN×D and make the spatio-temporal embedding as
STEt = SE + fTE(TEt) ∈ RN×D. Meanwhile, we extend the initial traffic input
Xt ∈ RN×Cx into fin(Xt) ∈ RN×D by applying a two-stacked fully connected
layer fin : RCx → RD, and produce the traffic value embedding normalized with
STE as X ′

t = fin(Xt) + STEt ∈ RN×D and use it as a next input of a module.

Here, we share the same SE and fTE for different time units, while f
(c)
in , f

(p)
in , f

(q)
in

differently used for each XC,XP ,XQ.
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4.3 Multi-feature aware GCGRU (MFGCGRU)

We propose a multi-feature aware GCGRU (MFGCGRU) by extending graph
convolutional gated recurrent unit to compute multiple areal features inside GRU
cell. At first, the model computes spatial proximity GP (Aproxy) by a graph con-
volution. A proximity matrix is calculated from distances witsh a Gaussian filter
as Aproxy[i, j] = exp(−(dij/σ)

2), where the dij is the distance between i-th and
j-th areas and σ is the standard deviation of distance values. After we conduct
row-normalization as Ãproxy, we use this matrix as one of graphs computed in
MFGCGRU.

Next, in order to extract areal similarity matrix Ak ∈ RN×N from areal
feature Fk to be used in MFGCGRU, we leverage attention mechanism as follows:

Uk1 = ReLU(W k1Fk) ∈ RN×D, Uk2 = ReLU(W k2Fk) ∈ RN×D,

ek = Uk1Uk2
T /

√
D ∈ RN×N , Ak[i, j] =

exp(ek[i, j])∑
o exp(ek[i, o])

(3)

, where W k1,W k2 ∈ RD×Vk are trainable parameters for each feature type k.
ek is basically represents the similarity between Uk1 and Uk2 by applying dot
product for each N ×N area pairs.

However, as more areal features are added, the model is congested and do
not reflect the areal similarity due to the curse of dimensionality[28]. Inspired
by a sentinel attention [29,30], we calculate the attention score for each area
can be less than 1 by applying sentinel variable Sk, which allows an area to
take partial attention when the areal knowledge is not beneficial. Our proposed
sentinel attention is defined as follows:

Sk = fsent(Fk ∥ SE) ∈ RN ,

Ak[i, j] =
exp(ek[i, j])

Sk[i] +
∑

o exp(ek[i, o])

(4)

, where fsent is a two-stacked fully connected layer with ReLU activation (which
keeps Sk ≥ 0). We apply concatenation (Fk ∥ SE) to calculate sentinel variable
differently for each area using spatial embedding.

r(t) = σ

(
1

K

K∑
k=1

Ak

(
X(t) ∥H(t−1)

)
W rk + br

)

u(t) = σ

(
1

K

K∑
k=1

Ak

(
X(t) ∥H(t−1)

)
W uk + bu

)

C(t) = tanh

(
1

K

K∑
k=1

Ak

(
X(t) ∥

(
r(t) ⊙H(t−1)

))
WCk + bc

)
H(t) = u(t) ⊙H(t−1) +

(
1− u(t)

)
⊙C(t).

(5)
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Finally, we ensemble multiple graph convolution inside GRU cell by apply-
ing mean merge of multiple graphs as Equation 5, where W rk,W uk,WCk ∈
R(Dx+Dh)×Dh (for k = 1, ...,K) and br, bu, bC ∈ RDh are trainable parameters,
and ⊙ is Hadamard product. We also apply an identity matrix (I) on top of a
proximity matrix and KN area similarity matrices as a residual computation,
thus K = 2 +KN as a default.

4.4 Weighted fusion network

From each MFGCGRU for XC, XP , XQ, we get an output of HC , HP , HQ ∈
RN×D, respectively. We apply a fully connected layer and a softmax to calculate
the weights of importance, and produce final output with a two-stacked fully
connected layer ffusion : RD → RCx as follows, where WC ,W P ,WQ ∈ R1×D

are trainables:

em = WmHm ∈ RN (m ∈ {C,P,Q}), αm =
exp(em)∑{C,P,Q}

j exp(ej)
∈ RN ,

Ŷt+1 = ffusion

{C,P,Q}∑
j

αj ⊙Hj

 ∈ RN×Cx .

(6)

4.5 Objective function

The objective function is defined as L(θ) = 1
N

∑N
i |Y i

t+1 − Ŷ i
t+1| where Yt ∈

RN×Cx , which is the mean absolute error (L1) loss.

5 Evaluation settings

5.1 Dataset

We use two datasets in our experiments: our constructed BusDJ dataset and a
benchmark TaxiBJ dataset. For the BusDJ dataset, we use the bus transit data of
boarding and alighting demand in a 15-minute unit which we obtain from smart
card data of Daejeon Metropolitan City. We construct the bus transit dataset
of N = 102 hexagonal 800m grid areas except the areas containing no bus stop
(e.g., hills, rivers). Then, we leverage six areal features representing land use,
transit, and demographic features: (1) land use type (LU, VLU = 6), (2) place-of-
interest (POI, VPOI = 29), (3), bus transit infrastructure (BUS, VBUS = 2), (4)
population (POP, VPOP = 4), (5) enterprise and employments of each business
type (ENT, VENT = 6), and (6) building area (BD, VBD = 7). The areal features
are provided by the open data service of government institutions [31,32,33]. For
benchmark TaxiBJ [13] dataset, we use two available areal features provided
in the original dataset. We extract the 20 most frequent POI features among
the original 648 types of POIs (VPOI = 20). We also use two ROAD features
(the number of roads and lanes) as original data (VROAD = 2). The detailed
description of both data is listed in Table 1.
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Table 1: Details of the datasets.

Dataset BusDJ TaxiBJ

N (area size) 102 (800m Hexa) 146 (1km Square)
Train timespan 3/1/2019 - 4/30/2019 2/1/2015 - 6/2/2015
Val timespan 5/1/2019 - 5/31/2019 6/3/2015 - 6/16/2015
Test timespan 6/1/2019 - 6/30/2019 6/17/2015 - 6/30/2015
Time interval 15min 30min
# timestamps 6832 7152
Average demand (in/out) 32.05/31.41 626.10/625.35
Target prediction time 8h - 21h (14h) 0h - 23h (24h)
# areal features 6 2

5.2 Experiment settings

We set the number of time sequences as Lc = 6, Lp = 7, Lq = 3 in Eq. 2,
and Cx = 2 for boarding and alighting demand. In training, we conduct min-
max normalization on demand and areal features. We set the hidden embedded
dimension for our model as D = 64. For other baselines, we use their default
settings. We conduct our experiments on a single NVIDIA TITAN RTX 24GB
environment with Tensorflow v1.15.1. For each model on each setting, we test
five times and record the mean of each result. We adopt an ADAM optimizer
with a learning rate of 0.01 and a batch size of 32. We apply early stopping with
validation loss with 15 patience epochs. We evaluate models with root mean
squared error (RMSE) and mean absolute error (MAE).We measure the error
of Cx input channels altogether.

5.3 Baselines

We compare the proposed model (ST-MFGCRN) with various methods for pub-
lic transit prediction. We first use data-based prediction methods without model
training as basic baselines: Trend Mean, Period Mean, Closeness Mean, and
Last Repeat. We set CNN-based time-series deep learning models, such as Con-
vLSTM [3], STResNet [4], and DeepSTN+ [5]. We also compare our model
with the graph-based deep learning models such as DCRNN [20], ASTGCN [21],
STMGCN [14], and GMAN [22] by using proximity information Aproxy described
in Section 4.3. For STMGCN, we use cosine-similarity based adjacency matrix
for each feature for graph computation. For ASTGCN and STMGCN, we use
closeness, period, trend component same as our model. For other baselines, we
use the default settings.

6 Results

We first analyze the feature influence by adding or removing each areal feature
from our model to extract the most important areal feature combination. Then,
we evaluate the performance of ST-MFGCRN by comparing it with baseline
models on the BusDJ and TaxiBJ datasets.
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6.1 Analysis of feature significance

Table 2: Feature influence on BusDJ (RMSE).
Results of important features are underlined.

Feature add/remove −GP +GP

KN = 0 N/A 8.5032

KN = 1 +LU 8.5000 8.4625
+POI 8.5409 8.4675
+BUS 8.5141 8.4747
+POP 8.5063 8.5119
+ENT 8.5100 8.4638
+BD 8.5290 8.5031

KN = 5 (all)–LU 8.4941 8.4635
(all)–POI 8.4939 8.4784
(all)–BUS 8.4976 8.4670
(all)–POP 8.4976 8.4619
(all)–ENT 8.4937 8.4816
(all)–BD 8.4782 8.4963

KN = 6 (all) 8.5005 8.4606

Best +BD, +ENT, +POI, +LU 8.4587

Table 3: Feature influence
on TaxiBJ dataset.

GP FPOI FROAD RMSE

– – – 99.849
+ – – 95.487
+ + – 93.860
+ – + 92.782
+ + + 92.767

To examine to what extent individual features improve prediction perfor-
mance, we conduct a feature influence study by adding or removing features.

For the BusDJ dataset, Table 2 shows a significant error decrease when the
proximity graph GP is provided, implying that geographical closeness essentially
captures the basic spatial correlation and improves the performance. The ex-
periment results by all combinations (when KN = 2, 3, 4, 5) are omitted due to
the space limit. We find that LU, ENT, and POI are the most significant areal
features when added, as their errors decrease the most from {KN = 0,+GP }
model. On the other hand, when we evaluate the most significant areal features
when removed, we observe BD, ENT, and POI increase the most errors from
{KN = 6,+GP } model. Throughout all experiments, the best setting is found
as a combination of BD, ENT, POI, and LU.

For TaxiBJ dataset, Table 3 shows the POI and ROAD features do improve
the performance significantly. The model shows the best result when it takes all
the areal features as well as the proximity graph.

These results imply that each areal feature provides unique information about
the urban environment, and multiple views of urban area supplements the overall
performance.
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Table 4: Performance comparison.

BusDJ TaxiBJ

Model RMSE MAE RMSE MAE

Trend Mean 11.3647 6.8445 307.430 199.915
Period Mean 15.3843 8.8179 309.706 198.528
Closeness Mean 15.8035 8.9490 225.092 159.634
Last Repeat 13.6378 8.6482 116.877 72.842

ConvLSTM 9.2843 5.9005 100.939 57.500
STResNet 9.2875 5.9241 103.689 63.305
DeepSTN+ 9.2215 5.8746 107.319 64.830

DCRNN 9.5296 6.1572 107.138 66.566
ASTGCN 10.7053 6.5875 126.197 75.555
STMGCN 10.0883 6.3992 110.993 71.346
GMAN 9.1381 5.8662 102.276 56.109

DCRNN+STE+CPT 8.7775 5.6461 106.756 62.876
GMAN+STE+CPT 8.9188 5.7136 113.828 67.689

ST-MFGCRN (best*) 8.4635 5.4987 92.767 52.443

*BusDJ: BD, ENT, POI, LU, TaxiBJ: POI, ROAD

6.2 Performance comparison

Table 4 shows the performance comparison of models on BusDJ and TaxiBJ
datasets. Our proposed ST-MFGCRN shows an improved performance of 7%
on BusDJ dataset and 8% on the TaxiBJ dataset compared to the state-of-the-
art baselines such as DeepSTN+ and GMAN in terms of RMSE. Among the
basic baselines, Trend Mean shows the best performance, which implies that
the travel patterns are similar for the same hour and weekday every week. On
the other hand, Closeness Mean and Last Repeat show high errors, indicating
the need for a temporal correlation training model. Among the Euclidian area-
based models, DeepSTN+ shows the highest performance as DeepSTN+ is more
advanced than STResnet or ConvLSTM. In addition, ConvLSTM shows better
performance than STResNet which leverages LSTM instead of 1D-CNN to find
the temporal correlation. Among the non-Euclidian models, GMAN shows the
highest performance compared to DCRNN and ASTGCN as it leverages spatial
attention which allows attention on all other areas rather than graph convolution
with fixed proximity values.

We also conduct experiments when we expand DCRNN with STE and close-
ness/period/trend (CPT) unit and GMAN with CPT unit, and find each compo-
nent improves performance on these baselines. However, our ST-MFGCRN still
outperforms as it leverages multiple features with sentinel attention and applies
weighted fusion to utilize these components.
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7 Conclusion

We propose ST-MFGCRN which allows exploiting various areal features during
spatio-temporal training to tackle transportation demand prediction problems.
To capture correlations depending on areal characteristics and spatial adjacency,
ST-MFGCRN incorporates multiple similarity matrices calculated from different
areal features and a distance-based proximity matrix. To calculate the similar-
ity matrix of each areal feature, we leverage our proposed sentinel attention,
which plays a role in taking partial attention when the knowledge is not help-
ful and harmoniously mixes various features. ST-MFGCRN captures temporal
correlation by different time unit inputs of closeness, period, and trend, and
spatio-temporal dependencies are also captured by spatio-temporal embedding.
Our model outperforms the state-of-the-art baselines on the real-world dataset
that we construct as well as on the benchmark dataset while successfully lever-
aging multiple areal features.
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