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Abstract—Urban vibrancy reflects the dynamic human activity
within urban spaces and is often measured using mobile data
that captures floating population trends. This study proposes
a novel approach to derive Urban Vibrancy embeddings from
real-time floating population data to enhance traffic prediction
models. Specifically, we utilize variational autoencoders (VAE) to
compress this data into actionable embeddings, which are then
integrated with long short-term memory (LSTM) networks to
predict future embeddings. These are subsequently applied in a
sequence-to-sequence framework for traffic forecasting. Our con-
tributions are threefold: (1) We use principal component analysis
(PCA) to interpret the embeddings, revealing temporal patterns
such as weekday versus weekend distinctions and seasonal pat-
terns; (2) We propose a method that combines VAE and LSTM,
enabling forecasting dynamic urban knowledge embedding; and
(3) Our approach improves accuracy and responsiveness in
traffic prediction models, including RNN, DCRNN, GTS, and
GMAN. This study demonstrates the potential of Urban Vibrancy
embeddings to advance traffic prediction and offer a more
nuanced analysis of urban mobility.

Index Terms—Urban Vibrancy, Floating Population, Traffic
Prediction, Knowledge Adaption

I. INTRODUCTION

Urban vibrancy reflects the dynamic human activities that
occur within urban spaces, and it is increasingly measured
through mobile data capturing floating population1 trends [1],
[2]. This concept embodies not just the visible energy of a
city but also the potential for interactions and the fundamental
social conditions that shape urban life [3]. In terms of human
activity, urban vibrancy can be expressed as the intensity and
diversity of people’s interactions within a city, providing a lens
into how individuals engage with their environment on both
physical and social levels [4].

1The floating population refers to individuals who temporarily reside in a
specific area without being counted in the official census, often for work or
educational purposes.

Understanding urban vibrancy poses significant challenges,
primarily in terms of Interpretation and Application.

1. Interpretation: A major challenge lies in effectively
clustering and interpreting patterns of urban vibrancy as ob-
served through floating population data, requiring a systematic
approach to categorize patterns and establish criteria for simi-
larity. Conventional methods, such as spatiotemporal analysis
[2], [5], kernel density estimation [6], and point-of-interest
(POI) association [7], have been developed to capture and
characterize urban vibrancy. However, these approaches often
struggle with the demands of real-time data streams and lack
the granularity needed to interpret complex, high-dimensional,
or image-based datasets.

2. Application: Another challenge is determining how
urban vibrancy derived from floating population data can
be applied in various domains. Recent works have explored
applications in urban vibrancy similar to multi-task learning.
For example, research on citywide crowd flow prediction has
used spatial-temporal neural networks to model long-range
dependencies [8], while other studies have employed deep
multi-view networks for tasks like taxi demand prediction [9].
These applications underscore the potential of urban vibrancy
data, yet they have not fully harnessed the insights that real-
time floating population trends can offer for traffic prediction
and similar dynamic applications.

This study introduces an innovative method for deriving
Urban Vibrancy embeddings from real-time floating popula-
tion data to enhance traffic prediction models. Specifically,
we employ variational autoencoders (VAE) to compress this
data into actionable embeddings. These embeddings are then
integrated with long short-term memory (LSTM) networks to
predict future states and applied within a sequence-to-sequence
framework for traffic forecasting.

Our contributions are as follows:



Urban Vibrancy 

0.6

-0.3

0.4

...

0.5

Embedding

Knowledge 
Adaption

Transportation 
Demand

CongestionVolume

Traffic Prediction

Fig. 1: Embedding Urban Vibrancy and Knowledge Adaption on Traffic Prediction.

1) Interpretation of Real-Time Embeddings: Through de-
tailed principal component analysis (PCA), we visualize
the generated embeddings, which reveal distinct tem-
poral patterns such as weekday versus weekend trends,
hourly variations, and seasonal shifts. This analysis
provides intuitive insights into the underlying dynamics
of urban vibrancy.

2) Dynamic Urban Vibrancy Embedding: By integrating
VAEs and LSTMs, our approach embeds real-time urban
data dynamically, enhancing the model’s adaptability to
changing urban conditions and improving its responsive-
ness to real-time data fluctuations.

3) Enhanced Model Responsiveness and Accuracy: Our
method demonstrates substantial improvements in traffic
prediction models, including RNN, DCRNN, GTS, and
GMAN, by incorporating real-time urban insights. This
makes it particularly suitable for the dynamic demands
of smart city environments.

4) Comprehensive Experimental Validation: We validate
our approach on real-world data from Seoul, Korea,
showcasing the method’s effectiveness. We also provide
our code and dataset to the community to support
reproducibility and further research 2.

This paper contributes to the field by offering a novel
perspective on using urban vibrancy to drive advanced traffic
prediction, facilitating a more nuanced and responsive ap-
proach to urban mobility analysis.

II. RELATED WORK

A. Urban Vibrancy using Floating Population

Urban vibrancy derived from floating population has be-
come an increasingly important aspect of urban studies and
planning. This concept refers to the dynamic energy and
vitality that temporary or non-permanent residents bring to
urban areas [3]. Floating populations, which include tourists,
business travelers, and short-term migrants, contribute signifi-
cantly to the diversity and intensity of human activities in cities
[10]. These transient groups often engage in various social,
economic, and cultural activities, thereby enhancing the overall

2https://github.com/suminhan/wka-net

vibrancy of urban spaces [11]. Researchers have utilized
multisource urban big data, including mobile phone location
data and social media check-ins, to analyze the spatiotemporal
patterns of floating populations and their impact on urban
vibrancy [12], [13]. Such studies have revealed that floating
populations can significantly influence the attractiveness of
neighborhoods, the use of public spaces, and the overall eco-
nomic vitality of urban areas6. Understanding the relationship
between floating populations and urban vibrancy is crucial for
urban planners and policymakers, as it can inform decisions
related to infrastructure development, public service provision,
and strategies for enhancing the overall quality of urban life
[3].

B. Knoweldge Adaption on Traffic Prediction

Conventional traffic prediction models like DCRNN [14],
ASTGCN [15], and GraphWaveNet [16] incorporate external
information as an additional input channel alongside traffic
data but lack mechanisms to process this information into
interpretable embeddings. While [17] introduces a neural
network for cross-mode knowledge adaptation, it does not
extend to graph-based spatio-temporal models. The MultiView
Deep LSTM framework, designed for ride-hailing demand
forecasting, captures features from order, speed, and weather
views but lacks sufficient interpretability and does not fully
exploit complex graph structures in spatio-temporal data [18].

III. PRELIMINARIES

The traffic prediction problem addressed in this study is
defined as follows: The traffic value is represented as Xt ∈
Rns×nf , where ns denotes the number of sensors, and nf

represents multiple channels, such as ”on” and ”off” in the
case of demand. Let Ct ∈ Rnw×nh×nc represent the real-time
floating population at timestamp t, where nw and nh are the
width and height of the area, respectively, and nc indicates the
number of channels. Consequently, the traffic prediction task
is defined as a p-to-q sequence prediction finding an optimal
function h:

h(Xp−t+1, ..., Xt, Cp−t+1, ..., Ct)→ X̂t+1, ..., X̂t+q

https://github.com/suminhan/wka-net


IV. METHODS

In this study, we employ a Variational Autoencoder to
extract Urban Vibrancy Embeddings, which are then used
for traffic prediction. Specifically, we apply an LSTM-based
sequence-to-sequence model to forecast future Urban Vibrancy
Knowledge. The predicted embeddings are fed into the De-
coder component of the pretrained Variational Autoencoder,
where the error between the predicted and actual Float-
ing Population values is calculated for training. Finally, we
incorporate an Urban Knowledge-Informed Spatio-Temporal
Embedding into existing models such as RNN, DCRNN, GTS,
and GMAN, which we hypothesize will improve overall model
performance.

Our Urban Vibrancy Knowledge extraction approach is
inspired by the Vision-Memory-Control (VMC) framework
proposed in [19], where components are divided into vision,
memory, and control stages. In our method, embeddings of
the current floating population scene serve as the “vision”
component, and these embeddings are used to predict future
scenes, replacing the control component with a prediction
mechanism in a structure similar to VMC.

A. Variational Autoencoder (VAE)

Encoder

Original Reconstructed

Mask
Decoder +

Fig. 2: Variational Autoencoder

The Floating Population data is normalized to values be-
tween 0 and 1, similar to image pixel values, and represented
in a grid format. Details regarding the preprocessing of the C
values are outlined in Section V-A.

As illustrated in Figure 2, the Variational Autoencoder
(VAE) model is applied to the refined Floating Population im-
age at time τ , denoted as Cτ , to extract the embedding zτ (i.e.,
zτ ← Encoder(Cτ ) ∈ Rd). The Decoder then reconstructs Ĉτ

(i.e., Ĉτ ← Decoder(zτ + Noise)), and the model is trained
using Mean Squared Error (MSE) loss between Cτ and Ĉτ .
The VAE process involves the following steps:

Lvae = MSE(C, Ĉ) +DKL(qϕ(z|C) ∥ p(z))

In detail, an image mask with values of either 0 or 1 is
applied to the final layer of the decoder, where these values
indicate active or inactive floating population signals. This
mask is concatenated into the final layer of the Decoder,
followed by an additional dense layer to produce the final
output. The mask helps the model avoid misinterpreting the
data distribution and prevents training on null patterns from
inactive cells.

B. LSTM for Forecasting Urban Vibrancy Embedding

The UVE-Seq2Seq model, depicted in Figure 3, leverages
the VAE’s Encoder (VE) and Decoder (VD) components to
predict future Urban Vibrancy Embeddings (ẑt+1, ..., ẑt+q).
Trained in Section IV-A, the model uses embeddings derived
from the current Floating Population data to forecast future
embeddings. During this process, the parameters of VE and
VD remain frozen and are not updated, with only the Seq2Seq
LSTM model undergoing training.

To predict these embeddings, the model first extracts an
embedding z for each Cτ in the range [t− p+ 1, ..., t]:

zτ ← VE(Cτ )

Using these embeddings, the UV-ENCDEC model generates
future embeddings (ẑt+1, ..., ẑt+q):

(ẑt+1, ..., ẑt+q)← UV-ENCDEC(zt−p+1, ..., zt)

Each predicted embedding ẑτ is then transformed into an
anticipated scene Ĉτ using the VAE Decoder (VD):

Ĉτ ← VD(ẑτ ) for τ ∈ [t+ 1, ..., t+ q]

The model optimizes its predictions using Mean Squared
Error (MSE) loss:

LUV-ENCDEC = MSE(C, Ĉ)

This sequence-to-sequence LSTM model is designed to cap-
ture and predict the future distributions of Floating Population,
enhancing traffic prediction by embedding urban vibrancy data
into the forecasting process.

C. Urban Vibrancy Knowledge Adaptation for Traffic Predic-
tion

While some models incorporate external information by
simply concatenating it with the existing input data, we found
that this approach did not lead to significant performance
improvements. Therefore, we developed the Spatio-Temporal
Vibrancy Embedding (STVE) as a more effective way to adapt
external knowledge. This embedding is then integrated into
traffic prediction models to enhance their ability to utilize
urban vibrancy information.

1) Spatio-Temporal Vibrancy Embedding (STVE): The ex-
tracted Urban Vibrancy Embedding (UVE) is derived from
past Floating Population scenes for the previous p timesteps
and forecasted for future q timesteps using the UV-ENCDEC
model. This UVE is incorporated into traffic prediction models
as supplementary information through Spatio-Temporal Em-
bedding.

The concept of Spatio-Temporal Embedding, which plays
a role similar to Positional Encoding in Transformers, is also
utilized in works such as [20], [21]. It introduces markers that
account for spatial and temporal differences. Here, we inte-
grate Urban Vibrancy Embedding with temporal information
to enhance traffic prediction.

The components of Spatio-Temporal Vibrancy Embedding
are as follows:
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Fig. 3: UVE-Seq2Seq: Forecasting Future Urban Vibrancy Embedding.

• ZS ∈ Rns×ns : Sensor encoding, an identity matrix of
size ns×ns , which is a unique one-hot embeddings for
each sensor.

• ZT ∈ R(p+q)×(7+24): Timestep embedding, where the
day-of-week and time-of-day (24 hours) for each timestep
are encoded using one-hot encoding into vectors of sizes
R7 and R24, respectively.

• ZV = (zt−p+1, . . . , zt, ẑt+1, . . . , ẑt+q) ∈ R(p+q)×d:
Urban Vibrancy Embedding, consisting of embeddings
from both observed and forecasted data.

The final Spatio-Temporal Urban Vibrancy Embedding
(ZSTV ) combines these components as follows:

ZSTV = f1(ZS) + f2(ZT ||ZV ) ∈ Rns×(p+q)×d

where each f1, f2 is a 2-stacked fully connected layers with
batch normalization, and || denotes concatenation.

2) Application to Traffic Prediction Models: The Urban
Knowledge-Informed Spatio-Temporal Embedding is inte-
grated into various traffic prediction models as follows:

1) GRU: ZTV = f(ZT ||ZV ) ∈ R(p+q)×d is concatenated
with the input at each GRU step to enhance temporal
context.

2) DCRNN, GTS: In the Encoder, each input timestep X is
expanded to d-dimensions using fully connected layers.
These transformed inputs are then combined with urban
vibrancy embedding as f(X) + ZSTV,1:p ∈ Rns×p×d.
In the Decoder, ZSTV,p+1:p+q is utilized in place of the
GO token.

3) GMAN: ZSTV replaces the traditional Spatio-Temporal
Encoding (STE) to enrich the model with urban vibrancy
information.

By incorporating STVE into these models, we enhance their
ability to predict traffic patterns with an additional layer of
urban context, leveraging real-time vibrancy information to
improve accuracy and robustness. Detailed implementations
can be referred from our public repository.

TABLE I: Data Statistics
Floating

Population
Subway
Demand

Traffic
Volume

Traffic
Speed

# Nodes 64× 64 275 73 263
Channel 1 2 1 1

Mean 570.99 725.47 1866.93 28.25
Std 1092.88 1129.04 1480.88 13.77

Timespan Jan 1, 2017 ∼ Dec 31, 2018 (hourly, 17,520 steps)

V. EXPERIMENTAL SETTINGS

A. Dataset

This study utilizes a comprehensive dataset from Seoul,
which captures floating population data over a two-year period
(2017-2018) across a central 22 km by 22 km area that in-
cludes major urban districts such as Gangnam and Gangbuk.3

The land use of our research area is also depicted in Figure 5.
The dataset records hourly variations in population density,
amounting to 2× 365× 24 observations, and is supplemented
with subway ridership, traffic volume, and traffic speed data
to evaluate improvements in predictive accuracy. Rigorous
preprocessing was performed, with missing values imputed
through temporal averaging of adjacent weeks to maintain
data continuity and integrity. Table I presents key statistics
for each data source, highlighting variability and providing
essential context for model development. This high-resolution
dataset lays a robust foundation for embedding real-time urban
vibrancy insights into traffic prediction, enabling an in-depth
exploration of how dynamic urban activity patterns impact
traffic flows in one of the world’s most vibrant metropolitan
areas.

1) Preprocessing Floating Population: To preprocess the
Floating Population variable C, we first apply z-score nor-
malization for each cell individually using its respective
mean (µij) and standard deviation (σij) from original values
Co ∈ R8760×64×64×1: C ′

ij =
Co

ij−µij

σij
. The normalized

result is then capped within ±2 standard deviations: C ′′ =

3The region is defined by [126.8721, 37.4723, 127.1219, 37.6709].
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min(max(C ′,−2), 2). Finally, the data is scaled to the [0, 1]
range using C = C′′+2

4 .
2) Graph Construction: The graphs for Subway Demand,

Traffic Volume, and Traffic Speed are constructed as follows:
Subway Demand graphs connect adjacent stations and transfer
stations, while Traffic Volume graphs link traffic sensors based
on their proximity. For Traffic Speed, road segments are
connected according to their physical distances.

B. Settings

We used the LibCity library4 for our experiments. The
model was trained with parameters p = 6 and q = 6, with each
unit representing one hour. For each model, we applied the
default learning rate and other hyperparameters provided by
LibCity, ensuring that weekday and time-of-day information
were consistently utilized.

The baseline models included RNN, DCRNN [14], GTS
[22], and GMAN [21]. The dataset was divided into training,
validation, and test sets with a ratio of 0.4, 0.1, and 0.5,
respectively. The training and validation sets consisted of data

4https://libcity.ai/

from 2017, while the test set used only 2018 data. This setup
ensured that the model was tested on a distinct, future year to
evaluate its predictive performance.

Unlike traditional traffic prediction approaches, where data
is split sequentially, we shuffled the training and validation
sets within the 2017 data. This shuffling ensured that the
validation set encompassed data from all seasons, rather than
being biased toward winter at the end of the year. By including
seasonal diversity, we aimed for a model that learns a balanced
representation across various patterns and conditions through-
out the year. The evaluation metric used for this experiment
was Mean Absolute Error (MAE).

VI. RESULT

A. Interpretation of Urban Vibrancy Embedding

In this paper, real-time LTE floating population data, which
reflects urban vibrancy, is spatio-temporal data. To facilitate a
deeper understanding of this data and to enable multi-faceted
interpretation, we employed data visualization techniques.
Principal Component Analysis (PCA) was used to interpret
and analyze the data through visualization.

1) Embedding Analysis of Temporal Urban Vibrancy Pat-
terns: Figure 4 reveals distinct embedding patterns for week-
days and weekends, displayed in subplots (a) and (b), re-
spectively. This facilitates a clear comparison between these
temporal contexts. Figures 4c and 4d showcase the decoded
results of PCA1 and PCA2. Plus, we find 5 PCA components
can represent the most influential components in the dataset
based on reconstruction error with a 99.7% threshold.

In South Korea, urban areas are categorized into residential,
commercial, industrial, and green zones, while non-urban areas
include managed, agricultural/forestry, and natural conserva-
tion zones. PCA1 primarily reflects population activity in
Seoul’s commercial and industrial zones, whereas PCA2 cap-
tures activity in residential, green, and non-urban zones. Thus,
PCA1 and PCA2 serve as proxies for population movement
within these distinct urban and non-urban sectors, highlighting
temporal urban vibrancy patterns that vary by zone type.
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Fig. 6: Comparison of Urban Vibrancy Embedding on Weekdays and Weekends of year 2017.

2) Temporal Evolution and Seasonal Variations: Figure 6
shows the temporal evolution of urban vibrancy embeddings
for weekdays and weekends, visualized at bimonthly intervals.
Weekday embeddings tend to form concentrated clusters, in-
dicating population convergence in specific areas due to work
and commuting routines. Conversely, weekend embeddings
are more dispersed, suggesting a broader array of activities
with less structured movement as people engage in leisure
and recreational pursuits.

A color gradient from purple (00:00) to yellow (23:00)
illustrates the daily temporal flow, revealing a rotation in
embedding values over time. Peak activity is observed from
10:00 to 15:00, while reduced activity occurs from 00:00 to
05:00, indicating population migration outside Seoul. Notably,
from 20:00 to 23:00, a sharp increase in activity reflects
significant movement in and out of Seoul. Weekday patterns
show counterclockwise rotations, while weekend patterns dis-
play clockwise rotations with a noticeable upward trend from
January to June in areas like parks and the Han River, due to
outdoor activities.

Seasonal variations are also evident; winter months (January

and February) show more concentrated clusters, while summer
months (July and August) exhibit broader distributions, reflect-
ing increased outdoor activities during warmer periods. These
seasonal shifts correspond to changes in mobility, with summer
promoting more outdoor movement and dispersed activities,
while colder winter months limit outdoor engagements.

3) Urban Planning Implications and Impact of Unique
Events: The observed temporal patterns provide valuable
insights for urban planning and management. Weekday clus-
tering suggests that urban transportation and infrastructure
can be optimized to meet predictable commuting demands.
In contrast, the dispersed weekend patterns call for a more
flexible approach to accommodate varied leisure activities.
Additionally, businesses might consider adjusting their hours
or staffing levels to align with these urban vibrancy trends,
particularly during weekends with heightened activity.

Unique events can also significantly affect urban vibrancy.
For instance, from January to March 2017, large-scale protests
of impeachment of ex-president in Seoul drew approximately
800,000 people to Jongno-gu. The embeddings from this
period show unique rotational patterns compared to 2018 data,



reflecting the impact of this rare collective event on urban
dynamics. These insights emphasize the need for responsive
planning strategies that account for both routine and excep-
tional events, supporting a more adaptive and resilient urban
environment.

In summary, this study offers a detailed view of urban
vibrancy, capturing how movement patterns fluctuate across
weekdays, weekends, and seasons. The findings provide valu-
able guidance for urban planning, infrastructure management,
and public policy, contributing to a more adaptable urban
environment that meets the diverse needs of city inhabitants.

B. Traffic Prediction Enhancement

Table II compares the performance of various models (RNN,
DCRNN, GTS, GMAN) with different embeddings (None, TE,
VE, TVE) for predicting SUBWAY, VOLUME, and SPEED
metrics over horizons of 1, 2, 3, and 6.

The RNN model shows high errors without embeddings,
with metrics like SUBWAY errors at 352.47 (horizon 1) and
SPEED errors at 6.133. Adding TE, VE, or TVE improves
performance, with TVE generally yielding the best results,
such as reducing SUBWAY error to 73.34. DCRNN performs
better than RNN, especially with VE, achieving a SUBWAY
error of 91.26 (horizon 1) and SPEED error of 4.38. GTS
generally has lower errors and benefits significantly from
VE and TVE, with SUBWAY errors dropping to 57.77 and
VOLUME errors to 138.21 (horizon 6) with TVE. GMAN
shows good performance for VOLUME (169.41 with VE) and
SPEED predictions but has higher SUBWAY errors compared
to GTS and DCRNN.

Among embeddings, TE alone reduces errors but is outper-
formed by VE and TVE. VE improves predictions across all
models, especially with DCRNN and GTS. TVE achieves the
lowest errors in most cases, like a 57.77 SUBWAY error for
GTS, combining temporal and vibrancy data effectively.

Errors generally increase with horizon length, but embed-
dings like VE and TVE help control this, particularly for
VOLUME and SPEED. For specific metrics, GTS with VE
or TVE performs best for SUBWAY, while DCRNN with VE
or TVE excels in SPEED predictions.

In summary, embedding strategies, especially VE and TVE,
significantly enhance predictive accuracy, particularly for GTS
and DCRNN models. VE alone is effective, but TVE provides
the lowest errors by adding a comprehensive context.

VII. CONCLUSION

In conclusion, this research presents a novel framework for
enhancing traffic prediction through the use of Urban Vibrancy
Embeddings derived from real-time floating population data.
By employing Variational Autoencoders (VAE) to compress
high-dimensional urban data into meaningful embeddings and
integrating these with Long Short-Term Memory (LSTM)
networks within a sequence-to-sequence forecasting frame-
work, we capture and leverage the dynamic patterns of urban
vibrancy effectively.

Our findings highlight the value of this approach in several
key areas. First, the use of principal component analysis
(PCA) allows for an intuitive interpretation of the temporal
patterns embedded in urban vibrancy data, such as differences
between weekdays and weekends, as well as seasonal and
hourly shifts. Second, the dynamic embedding of real-time
urban data improves model responsiveness and adaptability
to fluctuating urban conditions, which is crucial for appli-
cations in smart city environments. Third, our experiments
demonstrate notable improvements in the predictive accuracy
of models like RNN, DCRNN, GTS, and GMAN, showing the
versatility and effectiveness of our approach across different
modeling architectures.

Through rigorous validation on real-world data from Seoul,
we confirm the practical applicability and robustness of our
method. By releasing our code and dataset, we aim to support
reproducibility and encourage further exploration in this area.
This study advances the field by providing a more nuanced
and responsive approach to traffic prediction, integrating urban
vibrancy insights to enhance the adaptability of models to the
dynamic realities of urban mobility.
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